Your browser doesn't support javascript.
loading
Dopamine Receptor D1 Is Exempt from Transforming Growth Factor ß-Mediated Antifibrotic G Protein-Coupled Receptor Landscape Tampering in Lung Fibroblasts.
Gao, Ashley Y; Diaz Espinosa, Ana M; Nguyen, Ba Bao N; Link, Patrick A; Meridew, Jeffrey; Jones, Dakota L; Gibbard, Daniel F; Tschumperlin, Daniel J; Haak, Andrew J.
Afiliação
  • Gao AY; Departments of Physiology and Biomedical Engineering (A.M.D.E., P.A.L., J.M., D.L.J., D.J.T., A.J.H.), Ophthalmology (A.Y.G.), and Molecular Pharmacology and Experimental Therapeutics (B.B.N.N., D.F.G., A.J.H.), Mayo Clinic, Rochester, Minnesota.
  • Diaz Espinosa AM; Departments of Physiology and Biomedical Engineering (A.M.D.E., P.A.L., J.M., D.L.J., D.J.T., A.J.H.), Ophthalmology (A.Y.G.), and Molecular Pharmacology and Experimental Therapeutics (B.B.N.N., D.F.G., A.J.H.), Mayo Clinic, Rochester, Minnesota.
  • Nguyen BBN; Departments of Physiology and Biomedical Engineering (A.M.D.E., P.A.L., J.M., D.L.J., D.J.T., A.J.H.), Ophthalmology (A.Y.G.), and Molecular Pharmacology and Experimental Therapeutics (B.B.N.N., D.F.G., A.J.H.), Mayo Clinic, Rochester, Minnesota.
  • Link PA; Departments of Physiology and Biomedical Engineering (A.M.D.E., P.A.L., J.M., D.L.J., D.J.T., A.J.H.), Ophthalmology (A.Y.G.), and Molecular Pharmacology and Experimental Therapeutics (B.B.N.N., D.F.G., A.J.H.), Mayo Clinic, Rochester, Minnesota.
  • Meridew J; Departments of Physiology and Biomedical Engineering (A.M.D.E., P.A.L., J.M., D.L.J., D.J.T., A.J.H.), Ophthalmology (A.Y.G.), and Molecular Pharmacology and Experimental Therapeutics (B.B.N.N., D.F.G., A.J.H.), Mayo Clinic, Rochester, Minnesota.
  • Jones DL; Departments of Physiology and Biomedical Engineering (A.M.D.E., P.A.L., J.M., D.L.J., D.J.T., A.J.H.), Ophthalmology (A.Y.G.), and Molecular Pharmacology and Experimental Therapeutics (B.B.N.N., D.F.G., A.J.H.), Mayo Clinic, Rochester, Minnesota.
  • Gibbard DF; Departments of Physiology and Biomedical Engineering (A.M.D.E., P.A.L., J.M., D.L.J., D.J.T., A.J.H.), Ophthalmology (A.Y.G.), and Molecular Pharmacology and Experimental Therapeutics (B.B.N.N., D.F.G., A.J.H.), Mayo Clinic, Rochester, Minnesota.
  • Tschumperlin DJ; Departments of Physiology and Biomedical Engineering (A.M.D.E., P.A.L., J.M., D.L.J., D.J.T., A.J.H.), Ophthalmology (A.Y.G.), and Molecular Pharmacology and Experimental Therapeutics (B.B.N.N., D.F.G., A.J.H.), Mayo Clinic, Rochester, Minnesota.
  • Haak AJ; Departments of Physiology and Biomedical Engineering (A.M.D.E., P.A.L., J.M., D.L.J., D.J.T., A.J.H.), Ophthalmology (A.Y.G.), and Molecular Pharmacology and Experimental Therapeutics (B.B.N.N., D.F.G., A.J.H.), Mayo Clinic, Rochester, Minnesota haak.andrew@mayo.edu.
J Pharmacol Exp Ther ; 386(3): 277-287, 2023 09.
Article em En | MEDLINE | ID: mdl-37024146
ABSTRACT
Pulmonary fibroblasts are the primary producers of extracellular matrix (ECM) in the lungs, and their pathogenic activation drives scarring and loss of lung function in idiopathic pulmonary fibrosis (IPF). This uncontrolled production of ECM is stimulated by mechanosignaling and transforming growth factor beta 1 (TGF-ß1) signaling that together promote transcriptional programs including Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). G protein-coupled receptors (GPCRs) that couple to G α s have emerged as pharmacological targets to inactivate YAP/TAZ signaling and promote lung fibrosis resolution. Previous studies have shown a loss of expression of "antifibrotic GPCRs"-receptors that couple to G α s, in IPF patient-derived fibroblasts compared with non-IPF samples. Of the 14 G α s GPCRs we found to be expressed in lung fibroblasts, the dopamine receptor D1 (DRD1) was one of only two not repressed by TGF-ß1 signaling, with the ß2-adrenergic receptor being the most repressed. We compared the potency and efficacy of multiple D1 and ß2 receptor agonists +/- TGF-ß1 treatment in vitro for their ability to elevate cAMP, inhibit nuclear localization of YAP/TAZ, regulate expression of profibrotic and antifibrotic genes, and inhibit cellular proliferation and collagen deposition. Consistently, the activity of ß2 receptor agonists was lost, whereas D1 receptor agonists was maintained, after stimulating cultured lung fibroblasts with TGF-ß1. These data further support the therapeutic potential of the dopamine receptor D1 and highlight an orchestrated and pervasive loss of antifibrotic GPCRs mediated by TGF-ß1 signaling. SIGNIFICANCE STATEMENT Idiopathic pulmonary fibrosis (IPF) is a deadly lung disease with limited therapies. GPCRs have emerged as a primary target for the development of novel antifibrotic drugs; however, a challenge to this approach is the dramatic changes in GPCR expression in response to profibrotic stimuli. Here, we investigate the impact of TGF-ß1 on the expression of antifibrotic GPCRs and show the D1 dopamine receptor expression is uniquely maintained in response to TGF-ß1, further implicating it as a compelling target to treat IPF.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fator de Crescimento Transformador beta1 / Fibrose Pulmonar Idiopática Limite: Humans Idioma: En Revista: J Pharmacol Exp Ther Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fator de Crescimento Transformador beta1 / Fibrose Pulmonar Idiopática Limite: Humans Idioma: En Revista: J Pharmacol Exp Ther Ano de publicação: 2023 Tipo de documento: Article