Your browser doesn't support javascript.
loading
Data processing pipeline for cardiogenic shock prediction using machine learning.
Jajcay, Nikola; Bezak, Branislav; Segev, Amitai; Matetzky, Shlomi; Jankova, Jana; Spartalis, Michael; El Tahlawi, Mohammad; Guerra, Federico; Friebel, Julian; Thevathasan, Tharusan; Berta, Imrich; Pölzl, Leo; Nägele, Felix; Pogran, Edita; Cader, F Aaysha; Jarakovic, Milana; Gollmann-Tepeköylü, Can; Kollarova, Marta; Petrikova, Katarina; Tica, Otilia; Krychtiuk, Konstantin A; Tavazzi, Guido; Skurk, Carsten; Huber, Kurt; Böhm, Allan.
Afiliação
  • Jajcay N; Premedix Academy, Bratislava, Slovakia.
  • Bezak B; Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic.
  • Segev A; Premedix Academy, Bratislava, Slovakia.
  • Matetzky S; Clinic of Cardiac Surgery, National Institute of Cardiovascular Diseases, Bratislava, Slovakia.
  • Jankova J; Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.
  • Spartalis M; The Leviev Cardiothoracic & Vascular Center, Chaim Sheba Medical Center, Ramat Gan, Israel.
  • El Tahlawi M; Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
  • Guerra F; The Leviev Cardiothoracic & Vascular Center, Chaim Sheba Medical Center, Ramat Gan, Israel.
  • Friebel J; Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
  • Thevathasan T; Premedix Academy, Bratislava, Slovakia.
  • Berta I; 3rd Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece.
  • Pölzl L; Global Clinical Scholars Research Training (GCSRT) Program, Harvard Medical School, Boston, MA, United States.
  • Nägele F; Department of Cardiology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt.
  • Pogran E; Cardiology and Arrhythmology Clinic, Marche Polytechnic University, University Hospital "Umberto I - Lancisi - Salesi", Ancona, Italy.
  • Cader FA; Department of Cardiology Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité (DHZC), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany.
  • Jarakovic M; Department of Cardiology Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité (DHZC), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany.
  • Gollmann-Tepeköylü C; Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany.
  • Kollarova M; Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Berlin, Germany.
  • Petrikova K; Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Berlin, Germany.
  • Tica O; Premedix Academy, Bratislava, Slovakia.
  • Krychtiuk KA; Department for Cardiac Surgery, Cardiac Regeneration Research, Medical University of Innsbruck, Innsbruck, Austria.
  • Tavazzi G; Department for Cardiac Surgery, Cardiac Regeneration Research, Medical University of Innsbruck, Innsbruck, Austria.
  • Skurk C; 3rd Medical Department, Cardiology and Intensive Care Medicine, Wilhelminen Hospital, Vienna, Austria.
  • Huber K; Department of Cardiology, Ibrahim Cardiac Hospital & Research Institute, Dhaka, Bangladesh.
  • Böhm A; Cardiac Intensive Care Unit, Institute for Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia.
Front Cardiovasc Med ; 10: 1132680, 2023.
Article em En | MEDLINE | ID: mdl-37034352
ABSTRACT

Introduction:

Recent advances in machine learning provide new possibilities to process and analyse observational patient data to predict patient outcomes. In this paper, we introduce a data processing pipeline for cardiogenic shock (CS) prediction from the MIMIC III database of intensive cardiac care unit patients with acute coronary syndrome. The ability to identify high-risk patients could possibly allow taking pre-emptive measures and thus prevent the development of CS.

Methods:

We mainly focus on techniques for the imputation of missing data by generating a pipeline for imputation and comparing the performance of various multivariate imputation algorithms, including k-nearest neighbours, two singular value decomposition (SVD)-based methods, and Multiple Imputation by Chained Equations. After imputation, we select the final subjects and variables from the imputed dataset and showcase the performance of the gradient-boosted framework that uses a tree-based classifier for cardiogenic shock prediction.

Results:

We achieved good classification performance thanks to data cleaning and imputation (cross-validated mean area under the curve 0.805) without hyperparameter optimization.

Conclusion:

We believe our pre-processing pipeline would prove helpful also for other classification and regression experiments.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Front Cardiovasc Med Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Eslováquia

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Front Cardiovasc Med Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Eslováquia