Your browser doesn't support javascript.
loading
Characterization of cerebrovascular changes in mice treated with alcohol by photoacoustic imaging.
Sun, Weikang; Cai, Bingdong; Rao, Jie; Zhou, Feifan.
Afiliação
  • Sun W; Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China.
  • Cai B; Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China.
  • Rao J; Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China.
  • Zhou F; Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China.
J Biophotonics ; 16(8): e202300038, 2023 08.
Article em En | MEDLINE | ID: mdl-37078184
Alcohol has complex effects on cerebrovascular health. Monitoring the pathology of alcohol induced cerebrovascular changes in vivo is essential for understanding the mechanism and developing potential treatment strategies. Here, photoacoustic imaging was employed to examine cerebrovascular changes in mice under the treatment of alcohol at different doses. By analyzing the association of cerebrovascular structure, hemodynamics, neuronal function and corresponding behavior, we found that alcohol affected brain function and behavior in a dose-dependent manner. Low dose of alcohol increased cerebrovascular blood volume and activated neurons, without addictive behaviors and cerebrovascular structure changes. With the dose increased, cerebrovascular blood volume gradually decreased, triggering obviously progressive effects on the immune microenvironment, cerebrovascular structure and addictive behavior. These findings will provide further insights into the characterization of the biphasic effects of alcohol.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Técnicas Fotoacústicas Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Revista: J Biophotonics Assunto da revista: BIOFISICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Técnicas Fotoacústicas Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Revista: J Biophotonics Assunto da revista: BIOFISICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China