Your browser doesn't support javascript.
loading
Practical assessment of risk of VILI from ventilating power: a conceptual model.
Marini, John J; Thornton, Lauren T; Rocco, Patricia R M; Gattinoni, Luciano; Crooke, Philip S.
Afiliação
  • Marini JJ; Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis/St Paul, MN, USA. marin002@umn.edu.
  • Thornton LT; Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis/St Paul, MN, USA.
  • Rocco PRM; Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
  • Gattinoni L; Department of Anesthesiology, University of Göttingen, Göttingen, Germany.
  • Crooke PS; Department of Mathematics, Vanderbilt University, Nashville, TN, USA.
Crit Care ; 27(1): 157, 2023 04 20.
Article em En | MEDLINE | ID: mdl-37081517
ABSTRACT
At the bedside, assessing the risk of ventilator-induced lung injury (VILI) requires parameters readily measured by the clinician. For this purpose, driving pressure (DP) and end-inspiratory static 'plateau' pressure ([Formula see text]) of the tidal cycle are unquestionably useful but lack key information relating to associated volume changes and cumulative strain. 'Mechanical power', a clinical term which incorporates all dissipated ('non-elastic') and conserved ('elastic') energy components of inflation, has drawn considerable interest as a comprehensive 'umbrella' variable that accounts for the influence of ventilating frequency per minute as well as the energy cost per tidal cycle. Yet, like the raw values of DP and [Formula see text], the absolute levels of energy and power by themselves may not carry sufficiently precise information to guide safe ventilatory practice. In previous work we introduced the concept of 'damaging energy per cycle'. Here we describe how-if only in concept-the bedside clinician might gauge the theoretical hazard of delivered energy using easily observed static circuit pressures ([Formula see text] and positive end expiratory pressure) and an estimate of the maximally tolerated (threshold) non-dissipated ('elastic') airway pressure that reflects the pressure component applied to the alveolar tissues. Because its core inputs are already in use and familiar in daily practice, the simplified mathematical model we propose here for damaging energy and power may promote deeper comprehension of the key factors in play to improve lung protective ventilation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Síndrome do Desconforto Respiratório / Lesão Pulmonar Induzida por Ventilação Mecânica Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Crit Care Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Síndrome do Desconforto Respiratório / Lesão Pulmonar Induzida por Ventilação Mecânica Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Crit Care Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos