Your browser doesn't support javascript.
loading
Wetting transition and fluid trapping in a microfluidic fracture.
Qiu, Yu; Xu, Ke; Pahlavan, Amir A; Juanes, Ruben.
Afiliação
  • Qiu Y; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Xu K; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Pahlavan AA; Department of Energy and Resources Engineering, Peking University, Beijing 100871, China.
  • Juanes R; Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511.
Proc Natl Acad Sci U S A ; 120(22): e2303515120, 2023 May 30.
Article em En | MEDLINE | ID: mdl-37216501
Immiscible fluid-fluid displacement in confined geometries is a fundamental process occurring in many natural phenomena and technological applications, from geological CO2 sequestration to microfluidics. Due to the interactions between the fluids and the solid walls, fluid invasion undergoes a wetting transition from complete displacement at low displacement rates to leaving a film of the defending fluid on the confining surfaces at high displacement rates. While most real surfaces are rough, fundamental questions remain about the type of fluid-fluid displacement that can emerge in a confined, rough geometry. Here, we study immiscible displacement in a microfluidic device with a precisely controlled structured surface as an analogue for a rough fracture. We analyze the influence of the degree of surface roughness on the wetting transition and the formation of thin films of the defending liquid. We show experimentally, and rationalize theoretically, that roughness affects both the stability and dewetting dynamics of thin films, leading to distinct late-time morphologies of the undisplaced (trapped) fluid. Finally, we discuss the implications of our observations for geologic and technological applications.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2023 Tipo de documento: Article