Your browser doesn't support javascript.
loading
Unpacking and validating the "integration" core concept of physiology by an Australian team.
Moro, Christian; Douglas, Tracy; Phillips, Ruben; Towstoless, Michelle; Hayes, Alan; Hryciw, Deanne H; Lexis, Louise; Tangalakis, Kathy.
Afiliação
  • Moro C; Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia.
  • Douglas T; School of Health Sciences, College of Health and Medicine, University of Tasmania, Newnham, Australia.
  • Phillips R; School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
  • Towstoless M; First Year College, Victoria University, Melbourne, Australia.
  • Hayes A; College of Health & Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia.
  • Hryciw DH; School of Environment and Science, Griffith University, Nathan, Australia.
  • Lexis L; School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia.
  • Tangalakis K; First Year College, Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, Australia.
Adv Physiol Educ ; 47(3): 436-442, 2023 Sep 01.
Article em En | MEDLINE | ID: mdl-37227229
ABSTRACT
Consensus was reached on seven core concepts of physiology using the Delphi method, including "integration," outlined by the descriptor "cells, tissues, organs, and organ systems interact to create and sustain life." This core concept was unpacked by a team of 3 Australian physiology educators into hierarchical levels, identifying 5 themes and 10 subthemes, up to 1 level deep. The unpacked core concept was then circulated among 23 experienced physiology educators for comments and to rate both level of importance and level of difficulty for each theme and subtheme. Data were analyzed using a one-way ANOVA to compare between and within themes. The main theme (theme 1 the body is organized within a hierarchy of structures, from atoms to molecules, cells, tissues, organs, and organ systems) was almost universally rated as Essential. Interestingly, the main theme was also rated between Slightly Difficult to Not Difficult, which was significantly different from all other subthemes. There were two separate subsets of themes in relation to importance, with three themes rating between Essential and Important and the two other themes rating as Important. Two subsets in the difficulty of the main themes were also identified. While many core concepts can be taught concurrently, Integration requires the application of prior knowledge, with the expectation that learners should be able to apply concepts from "cell-cell communication," "homeostasis," and "structure and function," before understanding the overall Integration core concept. As such, themes from the Integration core concept should be taught within the endmost semesters of a Physiology program.NEW & NOTEWORTHY This article proposes the inclusion of a core concept regarding "integration" into physiology-based curricula, with the descriptor "cells, tissues, organs, and organ systems interact to create and sustain life." This concept expands prior knowledge and applies physiological understanding to real-world scenarios and introduces contexts such as medications, diseases, and aging to the student learning experience. To comprehend the topics within the Integration core concept, students will need to apply learned material from earlier semesters.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fisiologia / Currículo Limite: Humans País/Região como assunto: Oceania Idioma: En Revista: Adv Physiol Educ Assunto da revista: EDUCACAO / FISIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fisiologia / Currículo Limite: Humans País/Região como assunto: Oceania Idioma: En Revista: Adv Physiol Educ Assunto da revista: EDUCACAO / FISIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Austrália