Investigation on Physico Chemical and X-ray Shielding Performance of Zinc Doped Nano-WO3 Epoxy Composite for Light Weight Lead Free Aprons.
Materials (Basel)
; 16(10)2023 May 20.
Article
em En
| MEDLINE
| ID: mdl-37241493
This report addresses a way to reduce the usage of highly toxic lead in diagnostic X-ray shielding by developing a cost-effective, eco-friendly nano-tungsten trioxide (WO3) epoxy composite for low-weight aprons. Zinc (Zn)-doped WO3 nanoparticles of 20 to 400 nm were synthesized by an inexpensive and scalable chemical acid-precipitation method. The prepared nanoparticles were subjected to X-ray diffraction, Raman spectroscopy, UV-visible spectroscopy, photoluminescence, high-resolution-transmission electron microscope, scanning electron microscope, and the results showed that doping plays a critical role in influencing the physico-chemical properties. The prepared nanoparticles were used as shielding material in this study, which were dispersed in a non-water soluble durable epoxy resin polymer matrix and the dispersed materials were coated over a rexine cloth using the drop-casting method. The X-ray shielding performance was evaluated by estimating the linear attenuation coefficient (µ), mass attenuation coefficient (µm), half value layer (HVL), and X-ray percentage of attenuation. Overall, an improvement in X-ray attenuation in the range of 40-100 kVp was observed for the undoped WO3 nanoparticles and Zn-doped WO3 nanoparticles, which was nearly equal to lead oxide-based aprons (reference material). At 40 kVp, the percentage of attenuation of 2% Zn doped WO3 was 97% which was better than that of other prepared aprons. This study proves that 2% Zn doped WO3 epoxy composite yields a better particle size distribution, µm, and lower HVL value and hence it can be a convenient lead free X-ray shielding apron.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Revista:
Materials (Basel)
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Índia