Your browser doesn't support javascript.
loading
Thermostable Human Basic Fibroblast Growth Factor (TS-bFGF) Engineered with a Disulfide Bond Demonstrates Superior Culture Outcomes in Human Pluripotent Stem Cell.
Kim, Sejong; Kang, Geun-Ho; Lim, Kyung Min; Shin, Yeokyung; Song, Kwonwoo; Park, Sangrok; An, Jongyub; Kim, Dae Young; Shin, Hang-Cheol; Cho, Ssang-Goo.
Afiliação
  • Kim S; Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea.
  • Kang GH; R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea.
  • Lim KM; Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea.
  • Shin Y; R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea.
  • Song K; Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea.
  • Park S; R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea.
  • An J; Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea.
  • Kim DY; R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea.
  • Shin HC; Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea.
  • Cho SG; R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea.
Biology (Basel) ; 12(6)2023 Jun 20.
Article em En | MEDLINE | ID: mdl-37372172
ABSTRACT
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) can differentiate into various tissues and are an essential source of various disease models and therapeutics. Various growth factors are required in order to culture pluripotent stem cells, among which basic fibroblast growth factor (bFGF) is essential for maintaining stem cell ability. However, bFGF has a short half-life (8 h) under normal mammalian cell culture conditions, and its activity decreases after 72 h, posing a serious problem in the production of high-quality stem cells. Here, we evaluated the various functions of pluripotent stem cells (PSCs) by utilizing an engineered thermostable bFGF (TS-bFGF) that is thermally stable and maintains activity longer under mammalian culture conditions. PSCs cultured with TS-bFGF showed better proliferation, stemness, morphology, and differentiation than cells cultured with wild-type bFGF. In light of the importance of stem cells in a wide range of applications in the medical and biotechnology fields, we anticipate that TS-bFGF, as a thermostable and long-acting bFGF, can play a key role in securing high-quality stem cells through various sets of stem cell culture processes.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Biology (Basel) Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Biology (Basel) Ano de publicação: 2023 Tipo de documento: Article