Your browser doesn't support javascript.
loading
Regulating Li-Ion Transport through Ultrathin Molecular Membrane to Enable High-Performance All-Solid-State-Battery.
Rajendran, Sathish; George, Antony; Tang, Zian; Neumann, Christof; Turchanin, Andrey; Arava, Leela Mohana Reddy.
Afiliação
  • Rajendran S; Department of Mechanical Engineering, Wayne State University, Detroit, MI, 48202, USA.
  • George A; Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany.
  • Tang Z; Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany.
  • Neumann C; Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany.
  • Turchanin A; Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany.
  • Arava LMR; Center for Energy and Environmental Chemistry Jena (CEEC Jena), 07743, Jena, Germany.
Small ; 19(44): e2303625, 2023 Nov.
Article em En | MEDLINE | ID: mdl-37381623
Solid-state lithium metal batteries with garnet-type electrolyte provide several advantages over conventional lithium-ion batteries, especially for safety and energy density. However, a few grand challenges such as the propagation of Li dendrites, poor interfacial contact between the solid electrolyte and the electrodes, and formation of lithium carbonate during ambient exposure over the solid-state electrolyte prevent the viability of such batteries. Herein, an ultrathin sub-nanometer porous carbon nanomembrane (CNM) is employed on the surface of solid-state electrolyte (SSE) that increases the adhesion of SSE with electrodes, prevents lithium carbonate formation over the surface, regulates the flow of Li-ions, and blocks any electronic leakage. The sub-nanometer scale pores in CNM allow rapid permeation of Li-ions across the electrode-electrolyte interface without the presence of any liquid medium. Additionally, CNM suppresses the propagation of Li dendrites by over sevenfold up to a current density of 0.7 mA cm-2 and enables the cycling of all-solid-state batteries at low stack pressure of 2 MPa using LiFePO4 cathode and Li metal anode. The CNM provides chemical stability to the solid electrolyte for over 4 weeks of ambient exposure with less than a 4% increase in surface impurities.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos