Your browser doesn't support javascript.
loading
Engineering Relaxor Behavior in (BaTiO3 )n /(SrTiO3 )n Superlattices.
Lupi, Eduardo; Wexler, Robert B; Meyers, Derek; Zahradnik, Anton; Jiang, Yizhe; Susarla, Sandhya; Ramesh, Ramamoorthy; Martin, Lane W; Rappe, Andrew M.
Afiliação
  • Lupi E; Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
  • Wexler RB; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Meyers D; Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104-6323, USA.
  • Zahradnik A; Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA.
  • Jiang Y; Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
  • Susarla S; Department of Physics, Oklahoma State University, Stillwater, OK, 74078, USA.
  • Ramesh R; Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
  • Martin LW; Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
  • Rappe AM; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Adv Mater ; 35(51): e2302012, 2023 Dec.
Article em En | MEDLINE | ID: mdl-37433562
Complex-oxide superlattices provide a pathway to numerous emergent phenomena because of the juxtaposition of disparate properties and the strong interfacial interactions in these unit-cell-precise structures. This is particularly true in superlattices of ferroelectric and dielectric materials, wherein new forms of ferroelectricity, exotic dipolar textures, and distinctive domain structures can be produced. Here, relaxor-like behavior, typically associated with the chemical inhomogeneity and complexity of solid solutions, is observed in (BaTiO3 )n /(SrTiO3 )n (n = 4-20 unit cells) superlattices. Dielectric studies and subsequent Vogel-Fulcher analysis show significant frequency dispersion of the dielectric maximum across a range of periodicities, with enhanced dielectric constant and more robust relaxor behavior for smaller period n. Bond-valence molecular-dynamics simulations predict the relaxor-like behavior observed experimentally, and interpretations of the polar patterns via 2D discrete-wavelet transforms in shorter-period superlattices suggest that the relaxor behavior arises from shape variations of the dipolar configurations, in contrast to frozen antipolar stripe domains in longer-period superlattices (n = 16). Moreover, the size and shape of the dipolar configurations are tuned by superlattice periodicity, thus providing a definitive design strategy to use superlattice layering to create relaxor-like behavior which may expand the ability to control desired properties in these complex systems.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos