Your browser doesn't support javascript.
loading
Transmembrane protein 117 knockdown protects against angiotensin-II-induced cardiac hypertrophy.
Yang, Yi; Wang, Xinquan; Yan, Peng; Wang, Dan; Luo, Tao; Zhou, Yaqiong; Chen, Shichao; Liu, Qiting; Hou, Jixin; Wang, Peijian.
Afiliação
  • Yang Y; Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
  • Wang X; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
  • Yan P; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China.
  • Wang D; Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
  • Luo T; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
  • Zhou Y; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China.
  • Chen S; Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
  • Liu Q; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
  • Hou J; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China.
  • Wang P; Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
Hypertens Res ; 46(10): 2326-2339, 2023 10.
Article em En | MEDLINE | ID: mdl-37488300
Mitochondrial dysfunction plays a critical role in the pathogenesis of pathological cardiac hypertrophy. Transmembrane protein 117 modulate mitochondrial membrane potential that may be involved in the regulation of oxidative stress and mitochondrial function. However, its role in the development of angiotensin II (Ang-II)-induced cardiac hypertrophy is unclear. Cardiac-specific TMEM117-knockout and control mice were subjected to cardiac hypertrophy induced by Ang-II infusion. Small-interfering RNAs against TMEM117 or adenovirus-based plasmids encoding TMEM117 were delivered into left ventricles of mice or incubated with neonatal murine ventricular myocytes (NMVMs) before Ang-II stimulation. We found that TMEM117 was upregulated in hypertrophic hearts and cardiomyocytes and TMEM117 deficiency attenuated Ang-II-induced cardiac hypertrophy in vivo. Consistently, the in vitro data demonstrated that Ang-II-induced cardiomyocyte hypertrophy significantly alleviated by TMEM117 knockdown. Conversely, overexpression of TMEM117 exacerbated cardiac hypertrophy and dysfunction. An Ang II-induced increase in cardiac (cardiomyocyte) oxidative stress was alleviated by cardiac-specific knockout (knockdown) of TMEM117 and was worsened by TMEM117 supplementation (overexpression). In addition, TMEM117 knockout decreased endoplasmic reticulum stress induced by Ang-II, which was reversed by TMEM117 supplementation. Furthermore, TMEM117 deficiency mitigated mitochondrial injury in hypertrophic hearts and cardiomyocyte, which was abolished by TMEM117 supplementation (overexpression). Taken together, these findings suggest that upregulation of TMEM117 contributes to the development of cardiac hypertrophy and the downregulation of TMEM117 may be a new therapeutic strategy for the prevention and treatment of cardiac hypertrophy.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Angiotensina II / Cardiomegalia Limite: Animals Idioma: En Revista: Hypertens Res Assunto da revista: ANGIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Angiotensina II / Cardiomegalia Limite: Animals Idioma: En Revista: Hypertens Res Assunto da revista: ANGIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China