Your browser doesn't support javascript.
loading
Fault Detection for Vaccine Refrigeration via Convolutional Neural Networks Trained on Simulated Datasets.
Abhiraman, Bhaskar; Fotis, Riley; Eskin, Leo; Rubin, Harvey.
Afiliação
  • Abhiraman B; School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
  • Fotis R; Department of Physics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
  • Eskin L; Cogent Science, LLC Darnestown, MD 20878, USA.
  • Rubin H; School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Int J Refrig ; 149: 274-285, 2023 May.
Article em En | MEDLINE | ID: mdl-37520788
In low-and middle-income countries, the cold chain that supports vaccine storage and distribution is vulnerable due to insufficient infrastructure and interoperable data. To bolster these networks, we developed a convolutional neural network-based fault detection method for vaccine refrigerators using datasets synthetically generated by thermodynamic modelling. We demonstrate that these thermodynamic models can be calibrated to real cooling systems in order to identify system-specific faults under a diverse range of operating conditions. If implemented on a large scale, this portable, flexible approach has the potential to increase the fidelity and lower the cost of vaccine distribution in remote communities.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Int J Refrig Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Int J Refrig Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos