Your browser doesn't support javascript.
loading
Understanding the Effect of Single Atom Cationic Defect Sites in an Al2O3 (012) Surface on Altering Selenate and Sulfate Adsorption: An Ab Initio Study.
Gupta, Srishti; Chismar, Adam; Muhich, Christopher.
Afiliação
  • Gupta S; Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281, USA.
  • Chismar A; Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281, USA.
  • Muhich C; Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281, USA.
J Phys Chem C Nanomater Interfaces ; 127(14): 6925-6937, 2023 Apr 13.
Article em En | MEDLINE | ID: mdl-37521103
Adsorption is a promising under-the-sink selenate remediation technique for distributed water systems. Recently it was shown that adsorption induced water network re-arraignment control adsorption energetics on the α-Al2O3 (012) surface. Here, we aim to elucidate the relative importance of the water network effects and surface cation identity on controlling selenate and sulfate adsorption energy using density functional theory calculations. Density functional theory (DFT) calculations predicted the adsorption energies of selenate and sulfate on nine transition metal cations (Sc-Cu) and two alkali metal cations (Ga and In) in the α-Al2O3 (012) surface under simulated acidic and neutral pH conditions. We find that the water network effects had larger impact on the adsorption energy than the cationic identity. However, cation identity secondarily controlled adsorption. Most cations decreased the adsorption energy weakening the overall performance, the larger Sc and In cations enabled inner-sphere adsorption in acidic conditions because they relaxed outward from the surface providing more space for adsorption. Additionally, only Ti induced Se selectivity over S by reducing the adsorbing selenate to selenite but not reducing the sulfate. Overall, this study indicates that tuning water network structure will likely have a larger impact than tuning cation-selenate interactions for increasing adsorbate effectiveness.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Phys Chem C Nanomater Interfaces Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Phys Chem C Nanomater Interfaces Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos