Your browser doesn't support javascript.
loading
Smoothened mediates medaka spermatogonia proliferation via Gli1-Rgcc-Cdk1 axis†.
Zhao, Changle; Liu, Xiang; Liu, Lei; Li, Jianeng; Liu, Xingyong; Tao, Wenjing; Wang, Deshou; Wei, Jing.
Afiliação
  • Zhao C; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
  • Liu X; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
  • Liu L; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
  • Li J; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
  • Liu X; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
  • Tao W; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
  • Wang D; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
  • Wei J; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
Biol Reprod ; 109(5): 772-784, 2023 Nov 15.
Article em En | MEDLINE | ID: mdl-37552059
ABSTRACT
The proliferation of spermatogonia directly affects spermatogenesis and male fertility, but its underlying molecular mechanisms are poorly understood. In this study, Smoothened (Smo), the central transducer of Hedgehog signaling pathway, was characterized in medaka (Oryzias latipes), and its role and underlying mechanisms in the proliferation of spermatogonia were investigated. Smo was highly expressed in spermatogonia. In ex vivo testicular organ culture and a spermatogonial cell line (SG3) derived from medaka mature testis, Smo activation promoted spermatogonia proliferation, while its inhibition induced apoptosis. The expression of glioma-associated oncogene homolog 1 (gli1) and regulator of cell cycle (rgcc) was significantly upregulated in SG3 after Smo activation. Furthermore, Gli1 transcriptionally upregulated the expression of rgcc, and Rgcc overexpression rescued cell apoptosis caused by Smo or Gli1 inhibition. Co-immunoprecipitation assay indicated that Rgcc could interact with cyclin-dependent kinase 1 (Cdk1) to regulate the cell cycle of spermatogonia. Collectively, our study firstly reveals that Smo mediates the proliferation of spermatogonia through Gli1-Rgcc-Cdk1 axis. In addition, Smo and Gli1 are necessary of the survival of spermatogonia. This study deepens our understanding of spermatogonia proliferation and survival at the molecular level, and provides insights into male fertility control and reproductive disease treatment.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oryzias Limite: Animals Idioma: En Revista: Biol Reprod Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oryzias Limite: Animals Idioma: En Revista: Biol Reprod Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China