Your browser doesn't support javascript.
loading
Current aspects of small extracellular vesicles in pain process and relief.
Zhang, Lanyu; Liu, Jin; Zhou, Cheng.
Afiliação
  • Zhang L; Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
  • Liu J; Laboratory of Anesthesia & Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
  • Zhou C; Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
Biomater Res ; 27(1): 78, 2023 Aug 10.
Article em En | MEDLINE | ID: mdl-37563666
ABSTRACT
Small extracellular vesicles (sEVs) have been identified as a noteworthy paracrine mechanism of intercellular communication in diagnosing and managing neurological disorders. Current research suggests that sEVs play a pivotal role in the pathological progression of pain, emphasizing their critical function in the pathological progression of pain in acute and chronic pain models. By facilitating the transfer of diverse molecules, such as proteins, nucleic acids, and metabolites, sEVs can modulate pain signaling transmission in both the central and peripheral nervous systems. Furthermore, the unique molecules conveyed by sEVs in pain disorders indicate their potential as diagnostic biomarkers. The application of sEVs derived from mesenchymal stem cells (MSCs) in regenerative pain medicine has emerged as a promising strategy for pain management. Moreover, modified sEVs have garnered considerable attention in the investigation of pathological processes and therapeutic interventions. This review presents a comprehensive overview of the current knowledge regarding the involvement of sEVs in pain pathogenesis and treatment. Nevertheless, additional research is imperative to facilitate their clinical implementation. Schematic diagram of sEVs in the biogenesis, signal transmission, diagnosis, and treatment of pain disorders. Small extracellular vesicles (sEVs) are secreted by multiple cells, loading with various biomolecules, such as miRNAs, transmembrane proteins, and amino acids. They selectively target other cells and regulating pain signal transmission. The composition of sEVs can serve as valuable biomarkers for pain diagnosis. In particular, mesenchymal stem cell-derived sEVs have shown promise as regenerative medicine for managing multiple pain disorders. Furthermore, by modifying the structure or contents of sEVs, they could potentially be used as a potent analgesic method.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Biomater Res Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Biomater Res Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China