Your browser doesn't support javascript.
loading
Molecular Design of Multifunctional Integrated Polymer Semiconductors with Intrinsic Stretchability, High Mobility, and Intense Luminescence.
Chen, Jinyang; Zhu, Mingliang; Shao, Mingchao; Shi, Wenkang; Yang, Jie; Kuang, Junhua; Wang, Chengyu; Gao, Wenqiang; Zhu, Can; Meng, Ruifang; Yang, Zhao; Shao, Zhihao; Zhao, Zhiyuan; Guo, Yunlong; Liu, Yunqi.
Afiliação
  • Chen J; Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
  • Zhu M; School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
  • Shao M; Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
  • Shi W; School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
  • Yang J; Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
  • Kuang J; School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
  • Wang C; Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
  • Gao W; School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
  • Zhu C; Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
  • Meng R; Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
  • Yang Z; School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
  • Shao Z; Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
  • Zhao Z; School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
  • Guo Y; Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
  • Liu Y; School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Adv Mater ; 36(4): e2305987, 2024 Jan.
Article em En | MEDLINE | ID: mdl-37639714
Multifunctional semiconductors integrating unique optical, electrical, mechanical, and chemical characteristics are critical to advanced and emerging manufacturing technologies. However, due to the trade-off challenges in design principles, fabrication difficulty, defects in existing materials, etc., realizing multiple functions through multistage manufacturing is quite taxing. Here, an effective molecular design strategy is established to prepare a class of multifunctional integrated polymer semiconductors. The pyridal[1,2,3]triazole-thiophene co-structured tetrapolymers with full-backbone coplanarity and considerable inter/intramolecular noncovalent interactions facilitate short-range order and excellent (re)organization capability of polymer chains, providing stress-dissipation sites in the film state. The regioregular multicomponent conjugated backbones contribute to dense packing, excellent crystallinity, high crack onset strain over 100%, efficient carrier transport with mobilities exceeding 1 cm2  V-1  s-1 , and controllable near-infrared luminescence. Furthermore, a homologous blending strategy is proposed to further enhance the color-tunable luminescent properties of polymers while effectively retaining mechanical and electrical properties. The blended system exhibits excellent field-effect mobility (µ) and quantum yield (Φ), reaching a record Φ · µ of 0.43 cm2  V-1  s-1 . Overall, the proposed strategy facilitates a rational design of regioregular semicrystalline intrinsically stretchable polymers with high mobility and color-tunable intense luminescence, providing unique possibilities for the development of multifunctional integrated semiconductors in organic optoelectronics.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article