Fate of Oxidation States at Actinide Centers in Redox-Active Ligand Systems Governed by Energy Levels of 5 f Orbitals.
Chemistry
; 29(69): e202302702, 2023 Dec 11.
Article
em En
| MEDLINE
| ID: mdl-37671842
We report the formation of a NpIV complex from the complexation of NpVI O2 2+ with the redox-active ligand tBu-pdiop2- =2,6-bis[N-(3,5-di-tert-butyl-2-hydroxyphenyl)iminomethyl]pyridine. To the best of our knowledge, this is the first example of the direct complexation-induced chemical reduction of NpVI O2 2+ to NpIV . In contrast, the complexation of UVI O2 2+ with tBu-pdiop2- did not induce the reduction of UVI O2 2+ , not even after the two-electron electrochemical reduction of [UVI O2 (tBu-pdiop)]. This contrast between the Np and U systems may be ascribed to the decrease of the energy of the 5 f orbitals in Np compared to those in U. The present findings indicate that the redox chemistry between UVI O2 2+ and NpVI O2 2+ should be clearly differentiated in redox-active ligand systems.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Revista:
Chemistry
Assunto da revista:
QUIMICA
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Japão