Your browser doesn't support javascript.
loading
Detection of Pedestrians in Reverse Camera Using Multimodal Convolutional Neural Networks.
Reveles-Gómez, Luis C; Luna-García, Huizilopoztli; Celaya-Padilla, José M; Barría-Huidobro, Cristian; Gamboa-Rosales, Hamurabi; Solís-Robles, Roberto; Arceo-Olague, José G; Galván-Tejada, Jorge I; Galván-Tejada, Carlos E; Rondon, David; Villalba-Condori, Klinge O.
Afiliação
  • Reveles-Gómez LC; Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.
  • Luna-García H; Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.
  • Celaya-Padilla JM; Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.
  • Barría-Huidobro C; Centro de Investigación en Ciberseguridad, Universidad Mayor de Chile, Manuel Montt 367, Providencia 7500628, Chile.
  • Gamboa-Rosales H; Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.
  • Solís-Robles R; Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.
  • Arceo-Olague JG; Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.
  • Galván-Tejada JI; Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.
  • Galván-Tejada CE; Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.
  • Rondon D; Departamento Estudios Generales, Universidad Continental, Arequipa 04001, Peru.
  • Villalba-Condori KO; Vicerrectorado de Investigación, Universidad Católica de Santa María, Yanahuara 04013, Peru.
Sensors (Basel) ; 23(17)2023 Aug 31.
Article em En | MEDLINE | ID: mdl-37688015
In recent years, the application of artificial intelligence (AI) in the automotive industry has led to the development of intelligent systems focused on road safety, aiming to improve protection for drivers and pedestrians worldwide to reduce the number of accidents yearly. One of the most critical functions of these systems is pedestrian detection, as it is crucial for the safety of everyone involved in road traffic. However, pedestrian detection goes beyond the front of the vehicle; it is also essential to consider the vehicle's rear since pedestrian collisions occur when the car is in reverse drive. To contribute to the solution of this problem, this research proposes a model based on convolutional neural networks (CNN) using a proposed one-dimensional architecture and the Inception V3 architecture to fuse the information from the backup camera and the distance measured by the ultrasonic sensors, to detect pedestrians when the vehicle is reversing. In addition, specific data collection was performed to build a database for the research. The proposed model showed outstanding results with 99.85% accuracy and 99.86% correct classification performance, demonstrating that it is possible to achieve the goal of pedestrian detection using CNN by fusing two types of data.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: México

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: México