Your browser doesn't support javascript.
loading
Low-dose liver CT: image quality and diagnostic accuracy of deep learning image reconstruction algorithm.
Caruso, Damiano; De Santis, Domenico; Del Gaudio, Antonella; Guido, Gisella; Zerunian, Marta; Polici, Michela; Valanzuolo, Daniela; Pugliese, Dominga; Persechino, Raffaello; Cremona, Antonio; Barbato, Luca; Caloisi, Andrea; Iannicelli, Elsa; Laghi, Andrea.
Afiliação
  • Caruso D; Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant'Andrea University Hospital, Sapienza University of Rome, Via Di Grottarossa, 1035-1039, 00189, Rome, Italy.
  • De Santis D; Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant'Andrea University Hospital, Sapienza University of Rome, Via Di Grottarossa, 1035-1039, 00189, Rome, Italy.
  • Del Gaudio A; Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant'Andrea University Hospital, Sapienza University of Rome, Via Di Grottarossa, 1035-1039, 00189, Rome, Italy.
  • Guido G; Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant'Andrea University Hospital, Sapienza University of Rome, Via Di Grottarossa, 1035-1039, 00189, Rome, Italy.
  • Zerunian M; Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant'Andrea University Hospital, Sapienza University of Rome, Via Di Grottarossa, 1035-1039, 00189, Rome, Italy.
  • Polici M; Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant'Andrea University Hospital, Sapienza University of Rome, Via Di Grottarossa, 1035-1039, 00189, Rome, Italy.
  • Valanzuolo D; Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant'Andrea University Hospital, Sapienza University of Rome, Via Di Grottarossa, 1035-1039, 00189, Rome, Italy.
  • Pugliese D; Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant'Andrea University Hospital, Sapienza University of Rome, Via Di Grottarossa, 1035-1039, 00189, Rome, Italy.
  • Persechino R; Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant'Andrea University Hospital, Sapienza University of Rome, Via Di Grottarossa, 1035-1039, 00189, Rome, Italy.
  • Cremona A; Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant'Andrea University Hospital, Sapienza University of Rome, Via Di Grottarossa, 1035-1039, 00189, Rome, Italy.
  • Barbato L; Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant'Andrea University Hospital, Sapienza University of Rome, Via Di Grottarossa, 1035-1039, 00189, Rome, Italy.
  • Caloisi A; Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant'Andrea University Hospital, Sapienza University of Rome, Via Di Grottarossa, 1035-1039, 00189, Rome, Italy.
  • Iannicelli E; Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant'Andrea University Hospital, Sapienza University of Rome, Via Di Grottarossa, 1035-1039, 00189, Rome, Italy.
  • Laghi A; Department of Medical-Surgical Sciences and Translational Medicine, Radiology Unit, Sant'Andrea University Hospital, Sapienza University of Rome, Via Di Grottarossa, 1035-1039, 00189, Rome, Italy. andrea.laghi@uniroma1.it.
Eur Radiol ; 34(4): 2384-2393, 2024 Apr.
Article em En | MEDLINE | ID: mdl-37688618
OBJECTIVES: To perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy compared to the routinely applied adaptive statistical iterative reconstruction (ASiR-V) algorithm. MATERIALS AND METHODS: Oncologic patients were prospectively enrolled and underwent contrast-enhanced CT. Images were reconstructed with DLIR with three intensity levels of reconstruction (high, medium, and low) and ASiR-V at strength levels from 10 to 100% with a 10% interval. Three radiologists characterized the lesions and two readers assessed diagnostic accuracy and calculated signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), figure of merit (FOM), and subjective image quality, the latter with a 5-point Likert scale. RESULTS: Fifty patients (mean age: 70 ± 10 years, 23 men) were enrolled and 130 liver lesions (105 benign lesions, 25 metastases) were identified. DLIR_H achieved the highest SNR and CNR, comparable to ASiR-V 100% (p ≥ .051). DLIR_M returned the highest subjective image quality (score: 5; IQR: 4-5; p ≤ .001) and significant median increase (29%) in FOM (p < .001). Differences in detection were identified only for lesions ≤ 0.5 cm: 32/33 lesions were detected with DLIR_M and 26 lesions were detected with ASiR-V 50% (p = .031). Lesion accuracy of was 93.8% (95% CI: 88.1, 97.3; 122 of 130 lesions) for DLIR and 87.7% (95% CI: 80.8, 92.8; 114 of 130 lesions) for ASiR-V 50%. CONCLUSIONS: DLIR yields superior image quality and provides higher diagnostic accuracy compared to ASiR-V in the assessment of hypovascular liver lesions, in particular for lesions ≤ 0.5 cm. CLINICAL RELEVANCE STATEMENT: Deep learning image reconstruction algorithm demonstrates higher diagnostic accuracy compared to iterative reconstruction in the identification of hypovascular liver lesions, especially for lesions ≤ 0.5 cm. KEY POINTS: • Iterative reconstruction algorithm impacts image texture, with negative effects on diagnostic capabilities. • Medium-strength deep learning image reconstruction algorithm outperforms iterative reconstruction in the diagnostic accuracy of ≤ 0.5 cm hypovascular liver lesions (93.9% vs 78.8%), also granting higher objective and subjective image quality. • Deep learning image reconstruction algorithm can be safely implemented in routine abdominal CT protocols in place of iterative reconstruction.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Aprendizado Profundo / Neoplasias Hepáticas Tipo de estudo: Diagnostic_studies / Guideline / Prognostic_studies Limite: Aged / Aged80 / Humans / Male / Middle aged Idioma: En Revista: Eur Radiol Assunto da revista: RADIOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Aprendizado Profundo / Neoplasias Hepáticas Tipo de estudo: Diagnostic_studies / Guideline / Prognostic_studies Limite: Aged / Aged80 / Humans / Male / Middle aged Idioma: En Revista: Eur Radiol Assunto da revista: RADIOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Itália