Your browser doesn't support javascript.
loading
Benzidine Derivatives as Electroactive Materials for Aqueous Organic Redox Flow Batteries.
Flores-Leonar, Martha M; Acosta-Tejada, Gloria; Laguna, Humberto G; Amador-Bedolla, Carlos; Sánchez-Castellanos, Mariano; Ugalde-Saldívar, Víctor M.
Afiliação
  • Flores-Leonar MM; Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, CDMX 04510, México.
  • Acosta-Tejada G; Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, CDMX 04510, México.
  • Laguna HG; Departamento de Química, Universidad Autónoma Metropolitana Iztapalapa, CDMX 09340, México.
  • Amador-Bedolla C; Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, CDMX 04510, México.
  • Sánchez-Castellanos M; Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, CDMX 04510, México.
  • Ugalde-Saldívar VM; Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, CDMX 04510, México.
ACS Omega ; 8(36): 32432-32443, 2023 Sep 12.
Article em En | MEDLINE | ID: mdl-37720753
This paper presents a theoretical and experimental evaluation of benzidine derivatives as electroactive molecules for organic redox flow batteries. These redox indicators are novel electroactive materials that can perform multielectron transfers in aqueous media. We performed the synthesis, electrochemical characterization, and theoretical study of the dimer of sodium 4-diphenylamine sulfonate, a benzidine derivative with high water solubility properties. The Pourbaix diagram of the dimer shows a bielectronic process at highly acidic pH values (≤ 0.9) and two single-electron transfers in a pH range from 0 to 9. The dimer was prepared in situ and tested on a neutral electrochemical flow cell as a stability diagnostic. To improve cell performance, we calculate and calibrate, with experimental data, the Pourbaix diagrams of benzidine derivatives using different substitution patterns and functional groups. A screening process allowed the selection of those derivatives with a bielectronic process in the entire pH window or at acidic/neutral pH values. Given the redox potential difference, they can be potential catholytes or anolytes in a flow cell. The couples formed with the final candidates can generate a theoretical cell voltage of 0.60 V at pH 0 and up to 0.68 V at pH 7. These candidate molecules could be viable as electroactive materials for a full-organic redox flow battery.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: ACS Omega Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: ACS Omega Ano de publicação: 2023 Tipo de documento: Article