Your browser doesn't support javascript.
loading
Aurivillius-layered Bi2WO6 nanoplates with CoOx cocatalyst as high-performance piezocatalyst for hydrogen evolution.
Tan, Lining; Sun, Xinran; Zhang, Jintao; Jin, Chengchao; Wang, Fei; Liu, Daiming.
Afiliação
  • Tan L; College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, China. elliot_wang@qust.edu.cn.
  • Sun X; College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, China. elliot_wang@qust.edu.cn.
  • Zhang J; College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, China. elliot_wang@qust.edu.cn.
  • Jin C; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
  • Wang F; College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, China. elliot_wang@qust.edu.cn.
  • Liu D; College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, China. elliot_wang@qust.edu.cn.
Dalton Trans ; 52(39): 14210-14219, 2023 Oct 10.
Article em En | MEDLINE | ID: mdl-37766470
ABSTRACT
Developing a high-performance piezocatalyst that directly transforms mechanical energy into hydrogen is highly desirable in the field of new energy. Herein, the Aurivillius-layered Bi2WO6 (BWO) nanoplates are prepared through a hydrothermal reaction at a moderate temperature of 160 °C, and exhibit strong piezoelectric properties, enabling them to catalyze water splitting through ultrasonic-induced piezocatalysis effect. The hydrogen evolution reaction (HER) and H2O2 generation efficiencies are measured to be 0.43 and 0.36 mmol g-1 h-1, respectively. To further boost piezocatalytic performance, cobalt oxide nanoparticles are intentionally photo-deposited onto these nanoplates as cocatalyst. This configuration results in a significantly boosted HER performance with an efficiency of 3.59 mmol g-1 h-1, which is 2.8 times higher than that of pristine nanoplates and demonstrates strong competitiveness compared to other reported piezocatalysts. The cobalt oxide cocatalyst plays a crucial role in facilitating efficient charge separation and migration, increasing the charge concentration, and ultimately enhancing piezocatalytic HER activity. Overall, this work highlights the potential of Aurivillius-layered bismuth oxide compounds as efficient piezocatalysts and provides valuable insights for designing high-performance piezocatalysts in the field of new energy.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Dalton Trans Assunto da revista: QUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Dalton Trans Assunto da revista: QUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China