High-energy all-solid-state lithium batteries enabled by Co-free LiNiO2 cathodes with robust outside-in structures.
Nat Nanotechnol
; 19(2): 208-218, 2024 Feb.
Article
em En
| MEDLINE
| ID: mdl-37798568
A critical current challenge in the development of all-solid-state lithium batteries (ASSLBs) is reducing the cost of fabrication without compromising the performance. Here we report a sulfide ASSLB based on a high-energy, Co-free LiNiO2 cathode with a robust outside-in structure. This promising cathode is enabled by the high-pressure O2 synthesis and subsequent atomic layer deposition of a unique ultrathin LixAlyZnzOδ protective layer comprising a LixAlyZnzOδ surface coating region and an Al and Zn near-surface doping region. This high-quality artificial interphase enhances the structural stability and interfacial dynamics of the cathode as it mitigates the contact loss and continuous side reactions at the cathode/solid electrolyte interface. As a result, our ASSLBs exhibit a high areal capacity (4.65 mAh cm-2), a high specific cathode capacity (203 mAh g-1), superior cycling stability (92% capacity retention after 200 cycles) and a good rate capability (93 mAh g-1 at 2C). This work also offers mechanistic insights into how to break through the limitation of using expensive cathodes (for example, Co-based) and coatings (for example, Nb-, Ta-, La- or Zr-based) while still achieving a high-energy ASSLB performance.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Revista:
Nat Nanotechnol
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Israel