Your browser doesn't support javascript.
loading
Exosomal miR-129 and miR-342 derived from intermittent hypoxia-stimulated vascular smooth muscle cells inhibit the eIF2α/ATF4 axis from preventing calcified aortic valvular disease.
Huang, Chen; Han, Xu; Yang, Linjie; Song, Wei; Zhang, Hualu; Zhu, Xiaohua; Huang, Gongcheng; Xu, Jing.
Afiliação
  • Huang C; Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi Distrcit, Zhengzhou, 450000, Henan Province, China.
  • Han X; Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi Distrcit, Zhengzhou, 450000, Henan Province, China.
  • Yang L; Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi Distrcit, Zhengzhou, 450000, Henan Province, China.
  • Song W; Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi Distrcit, Zhengzhou, 450000, Henan Province, China.
  • Zhang H; Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China.
  • Zhu X; Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi Distrcit, Zhengzhou, 450000, Henan Province, China.
  • Huang G; Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi Distrcit, Zhengzhou, 450000, Henan Province, China.
  • Xu J; Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi Distrcit, Zhengzhou, 450000, Henan Province, China. fccxuj@zzu.edu.cn.
J Cell Commun Signal ; 17(4): 1449-1467, 2023 Dec.
Article em En | MEDLINE | ID: mdl-37812275
This study aims to elucidate the role of miR-129/miR-342 loaded in exosomes derived from vascular smooth muscle cells (VSMCs) stimulated by intermittent hypoxia in calcified aortic valvular disease (CAVD). Bioinformatics analysis was conducted to identify differentially expressed miRs in VSMCs-derived exosomes and CAVD samples, and their potential target genes were predicted. VSMCs were exposed to intermittent hypoxia to induce stimulation, followed by isolation of exosomes. Valvular interstitial cells (VICs) were cultured in vitro to investigate the impact of miR-129/miR-342 on VICs' osteogenic differentiation and aortic valve calcification with eIF2α. A CAVD mouse model was established using ApoE knockout mice for in vivo validation. In CAVD samples, miR-129 and miR-342 were downregulated, while eIF2α and ATF4 were upregulated. miR-129 and miR-342 exhibited inhibitory effects on eIF2α through targeted regulation. Exosomes released from intermittently hypoxia-stimulated VSMCs contained miR-129 and miR-342. Overexpression of miR-129 and miR-342, or silencing ATF4, suppressed VICs' osteogenic differentiation and aortic valve calcification, which could be rescued by overexpressed eIF2α. Collectively, intermittent hypoxia stimulation of VSMCs leads to the secretion of exosomes that activate the miR-129/miR-342 dual pathway, thereby inhibiting the eIF2α/ATF4 axis and attenuating VICs' osteogenic differentiation and CAVD progression.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Cell Commun Signal Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Cell Commun Signal Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China