Your browser doesn't support javascript.
loading
Efficient Adsorption and Electrochemical Detection of Cd2+ with a Ternary MgZnFe-Layered Double Hydroxides Engineered Porous Biochar Composite.
Yu, Yongfang; Yang, Wenting; Li, Shujuan; Gao, Yansha; Wang, Linyu; Huang, Guoqin.
Afiliação
  • Yu Y; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, School of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China.
  • Yang W; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, School of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China.
  • Li S; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, School of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China.
  • Gao Y; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, School of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China.
  • Wang L; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, School of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China.
  • Huang G; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, School of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China.
Molecules ; 28(20)2023 Oct 10.
Article em En | MEDLINE | ID: mdl-37894481
Their unique layered structure, large specific surface area, good stability, high negative charge density between layers, and customizable composition give layered double hydroxides (LDHs) excellent adsorption and detection performance for heavy metal ions (HMIs). However, their easy aggregation and low electrical conductivity limit the practical application of untreated LDHs. In this work, a ternary MgZnFe-LDHs engineered porous biochar (MgZnFe-LDHs/PBC) heterojunction was proposed as a sensing and adsorption material for the effective detection and removal of Cd2+ from wastewater. The growth of MgZnFe-LDHs in the PBC pores not only reduces the accumulation of MgZnFe-LDHs, but also improves the electrical conductivity of the composite. The synergistic effect between MgZnFe-LDHs and PBC enables the composite to achieve a maximum adsorption capacity of up to 293.4 mg/g for Cd2+ in wastewater. Meanwhile, the MgZnFe-LDHs/PBC-based electrochemical sensor shows excellent detection performance for Cd2+, presenting a wide linear range (0.01 ng/L-1 mg/L), low detection limit (3.0 pg/L), good selectivity, and stability. The results indicate that MgZnFe-LDHs/PBC would be a potential material for detecting and removing Cd2+ from wastewater.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Cádmio Idioma: En Revista: Molecules Assunto da revista: BIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Cádmio Idioma: En Revista: Molecules Assunto da revista: BIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China