Your browser doesn't support javascript.
loading
Evolutionary design of explainable algorithms for biomedical image segmentation.
Cortacero, Kévin; McKenzie, Brienne; Müller, Sabina; Khazen, Roxana; Lafouresse, Fanny; Corsaut, Gaëlle; Van Acker, Nathalie; Frenois, François-Xavier; Lamant, Laurence; Meyer, Nicolas; Vergier, Béatrice; Wilson, Dennis G; Luga, Hervé; Staufer, Oskar; Dustin, Michael L; Valitutti, Salvatore; Cussat-Blanc, Sylvain.
Afiliação
  • Cortacero K; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France.
  • McKenzie B; Centre National de la Recherche Scientifique (CNRS) UMR5071, Toulouse, France.
  • Müller S; University of Toulouse III - Paul Sabatier, Toulouse, France.
  • Khazen R; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France.
  • Lafouresse F; Centre National de la Recherche Scientifique (CNRS) UMR5071, Toulouse, France.
  • Corsaut G; University of Toulouse III - Paul Sabatier, Toulouse, France.
  • Van Acker N; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France.
  • Frenois FX; Centre National de la Recherche Scientifique (CNRS) UMR5071, Toulouse, France.
  • Lamant L; University of Toulouse III - Paul Sabatier, Toulouse, France.
  • Meyer N; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France.
  • Vergier B; Centre National de la Recherche Scientifique (CNRS) UMR5071, Toulouse, France.
  • Wilson DG; University of Toulouse III - Paul Sabatier, Toulouse, France.
  • Luga H; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France.
  • Staufer O; Centre National de la Recherche Scientifique (CNRS) UMR5071, Toulouse, France.
  • Dustin ML; University of Toulouse III - Paul Sabatier, Toulouse, France.
  • Valitutti S; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France.
  • Cussat-Blanc S; Centre National de la Recherche Scientifique (CNRS) UMR5071, Toulouse, France.
Nat Commun ; 14(1): 7112, 2023 11 06.
Article em En | MEDLINE | ID: mdl-37932311
An unresolved issue in contemporary biomedicine is the overwhelming number and diversity of complex images that require annotation, analysis and interpretation. Recent advances in Deep Learning have revolutionized the field of computer vision, creating algorithms that compete with human experts in image segmentation tasks. However, these frameworks require large human-annotated datasets for training and the resulting "black box" models are difficult to interpret. In this study, we introduce Kartezio, a modular Cartesian Genetic Programming-based computational strategy that generates fully transparent and easily interpretable image processing pipelines by iteratively assembling and parameterizing computer vision functions. The pipelines thus generated exhibit comparable precision to state-of-the-art Deep Learning approaches on instance segmentation tasks, while requiring drastically smaller training datasets. This Few-Shot Learning method confers tremendous flexibility, speed, and functionality to this approach. We then deploy Kartezio to solve a series of semantic and instance segmentation problems, and demonstrate its utility across diverse images ranging from multiplexed tissue histopathology images to high resolution microscopy images. While the flexibility, robustness and practical utility of Kartezio make this fully explicable evolutionary designer a potential game-changer in the field of biomedical image processing, Kartezio remains complementary and potentially auxiliary to mainstream Deep Learning approaches.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Processamento de Imagem Assistida por Computador Limite: Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Processamento de Imagem Assistida por Computador Limite: Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: França