Your browser doesn't support javascript.
loading
Electrolyte Engineering Empowers Li||CFx Batteries to Achieve High Energy Density and Low Self-Discharge at Harsh Conditions.
Xiao, Yukang; Chen, Xunxin; Jian, Junhua; Cheng, Yong; Zou, Yue; Su, Yu; Wu, Qilong; Tang, Chao; Zhang, Zhongru; Wang, Ming-Sheng; Zheng, Jianming; Yang, Yong.
Afiliação
  • Xiao Y; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen University, Xiamen, 361005, China.
  • Chen X; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen University, Xiamen, 361005, China.
  • Jian J; Research Institute, Ningde Amperex Technology Limited, Ningde, 352100, China.
  • Cheng Y; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China.
  • Zou Y; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen University, Xiamen, 361005, China.
  • Su Y; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen University, Xiamen, 361005, China.
  • Wu Q; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen University, Xiamen, 361005, China.
  • Tang C; Research Institute, Ningde Amperex Technology Limited, Ningde, 352100, China.
  • Zhang Z; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen University, Xiamen, 361005, China.
  • Wang MS; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China.
  • Zheng J; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen University, Xiamen, 361005, China.
  • Yang Y; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen University, Xiamen, 361005, China.
Small ; 20(12): e2308472, 2024 Mar.
Article em En | MEDLINE | ID: mdl-37946668
ABSTRACT
Given its exceptional theoretical energy density (over 2000 Wh kg-1), lithium||carbon fluoride (Li||CFx) battery has garnered global attention. N-methylpyrrolidone (NMP)-based electrolyte is regarded as one promising candidate for tremendously enhancing the energy density of Li||CFx battery, provided self-discharge challenges can be resolved. This study successfully achieves a low self-discharge (LSD) and desirable electrochemical performance in Li||CFx batteries at high temperatures by utilizing NMP as the solvent and incorporating additional ingredients, including vinylene carbonate additive, as well as the dual-salt systems formed by LiBF4 with three different Li salts, namely lithium bis(oxalato)borate, lithium difluoro(oxalato)borate, and LiNO3. The experimental results unfold that the proposed methods not only minimize aluminum current collector corrosion, but also effectively passivate the Li metal anode. Among them, LiNO3 exhibits the most pronounced effect that achieves an energy density of ≈2400 Wh kg-1 at a current density of 10 mA g-1 at 30 °C, nearly 0% capacity-fade rate after 300 h of storage at 60 °C, and the capability to maintain a stable open-circuit voltage over 4000 h. This work provides a distinctive perspective on how to realize both high energy density and LSD rates at high temperature of Li||CFx battery.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China