Your browser doesn't support javascript.
loading
A glycolytic metabolite restores DNA repair activity of polynucleotide kinase 3'-phosphatase in polyglutamine (PolyQ) diseases.
Chakraborty, Anirban; Miller, Wyatt; Huai, Weihan; Biswas, Tapan; Mohan Mandal, Santi; Bosca, Lisardo; Ghosh, Gourisankar; Hazra, Tapas.
Afiliação
  • Chakraborty A; Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA.
  • Miller W; Department of Chemistry and Biochemistry, University of California San Diego, LA Jolla, California 92093, USA.
  • Huai W; Department of Chemistry and Biochemistry, University of California San Diego, LA Jolla, California 92093, USA.
  • Biswas T; Department of Chemistry and Biochemistry, University of California San Diego, LA Jolla, California 92093, USA.
  • Mohan Mandal S; Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA.
  • Bosca L; $ Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
  • Ghosh G; Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM) Arturo Duperier 4 28029 Madrid.
  • Hazra T; Department of Chemistry and Biochemistry, University of California San Diego, LA Jolla, California 92093, USA.
bioRxiv ; 2023 Oct 26.
Article em En | MEDLINE | ID: mdl-37961108
ABSTRACT
We previously reported that the loss of activity of an essential DNA repair enzyme, polynucleotide kinase 3'-phosphatase (PNKP), resulted in accumulation of double strand breaks (DSB) in patient's brain genome in Huntington's disease (HD) and Spinocerebellar ataxia type 3 (SCA3). Here we document that PNKP interacts with the nuclear isoform of phosphofructokinase fructose-2,6-bisphosphatase 3 (PFKFB3), which converts fructose-6-phosphate (F6P) into fructose-2,6-bisphosphate (F2,6BP), a potent allosteric modulator of glycolysis. Depletion of PFKFB3 markedly abrogates PNKP activity, thereby affecting PNKP mediated transcription-coupled non-homologous end joining (TC-NHEJ). Both PFKFB3 and F2,6BP levels are significantly lower in the nuclear extracts of HD and SCA3 patients' brains. Exogenous F2,6BP restored PNKP activity in the brain nuclear extracts of those samples. Moreover, delivery of F2,6BP into HD mouse striata-derived neuronal cells restored PNKP activity, transcribed genome integrity and cellular viability. We thus postulate that F2,6BP serves in vivo as a cofactor for proper functionality of PNKP and thereby of brain health. Our results thus provide a compelling rationale for exploring therapeutic use of F2,6BP and related compounds for treating polyQ diseases.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos