Your browser doesn't support javascript.
loading
Histone deacetylation and cytosine methylation compartmentalize heterochromatic regions in the genome organization of Neurospora crassa.
Scadden, Ashley W; Graybill, Alayne S; Hull-Crew, Clayton; Lundberg, Tiffany J; Lande, Nickolas M; Klocko, Andrew D.
Afiliação
  • Scadden AW; Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918.
  • Graybill AS; Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918.
  • Hull-Crew C; Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918.
  • Lundberg TJ; Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918.
  • Lande NM; Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918.
  • Klocko AD; Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918.
Proc Natl Acad Sci U S A ; 120(47): e2311249120, 2023 Nov 21.
Article em En | MEDLINE | ID: mdl-37963248
ABSTRACT
Chromosomes must correctly fold in eukaryotic nuclei for proper genome function. Eukaryotic organisms hierarchically organize their genomes, including in the fungus Neurospora crassa, where chromatin fiber loops compact into Topologically Associated Domain-like structures formed by heterochromatic region aggregation. However, insufficient data exist on how histone posttranslational modifications (PTMs), including acetylation, affect genome organization. In Neurospora, the HCHC complex [composed of the proteins HDA-1, CDP-2 (Chromodomain Protein-2), Heterochromatin Protein-1, and CHAP (CDP-2 and HDA-1 Associated Protein)] deacetylates heterochromatic nucleosomes, as loss of individual HCHC members increases centromeric acetylation, and alters the methylation of cytosines in DNA. Here, we assess whether the HCHC complex affects genome organization by performing Hi-C in strains deleted of the cdp-2 or chap genes. CDP-2 loss increases intra- and interchromosomal heterochromatic region interactions, while loss of CHAP decreases heterochromatic region compaction. Individual HCHC mutants exhibit different patterns of histone PTMs genome-wide, as CDP-2 deletion increases heterochromatic H4K16 acetylation, yet smaller heterochromatic regions lose H3K9 trimethylation and gain interheterochromatic region interactions; CHAP loss produces minimal acetylation changes but increases heterochromatic H3K9me3 enrichment. Loss of both CDP-2 and the DIM-2 DNA methyltransferase causes extensive genome disorder as heterochromatic-euchromatic contacts increase despite additional H3K9me3 enrichment. Our results highlight how the increased cytosine methylation in HCHC mutants ensures genome compartmentalization when heterochromatic regions become hyperacetylated without HDAC activity.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Histonas / Neurospora crassa Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Histonas / Neurospora crassa Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2023 Tipo de documento: Article