S-nitrosylation switches the Arabidopsis redox sensor protein, QSOX1, from an oxidoreductase to a molecular chaperone under heat stress.
Plant Physiol Biochem
; 206: 108219, 2024 Jan.
Article
em En
| MEDLINE
| ID: mdl-38048703
The Arabidopsis quiescin sulfhydryl oxidase 1 (QSOX1) thiol-based redox sensor has been identified as a negative regulator of plant immunity. Here, we have found that small molecular weight proteins of QSOX1 were converted to high molecular weight (HMW) complexes upon exposure to heat stress and that this was accompanied by a switch in QSOX1 function from a thiol-reductase to a molecular chaperone. Plant treatment with S-nitrosoglutathione (GSNO), which causes nitrosylation of cysteine residues (S-nitrosylation), but not with H2O2, induced HMW QSOX1 complexes. Thus, functional switching of QSOX1 is induced by GSNO treatment. Accordingly, simultaneous treatment of plants with heat shock and GSNO led to a significant increase in QSOX1 chaperone activity by increasing its oligomerization. Consequently, transgenic Arabidopsis overexpressing QSOX1 (QSOX1OE) showed strong resistance to heat shock, whereas qsox1 knockout plants exhibited high sensitivity to heat stress. Plant treatment with GSNO under heat stress conditions increased their resistance to heat shock. We conclude that S-nitrosylation allows the thiol-based redox sensor, QSOX1, to respond to various external stresses in multiple ways.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Arabidopsis
Idioma:
En
Revista:
Plant Physiol Biochem
Assunto da revista:
BIOQUIMICA
/
BOTANICA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Coréia do Sul