Your browser doesn't support javascript.
loading
Spatiotemporal variation, partitioning, and ecological risk assessment of benzothiazoles, benzotriazoles, and benzotriazole UV absorbers in the Yangtze River Estuary and its adjacent area.
Zhao, Ming-Liang; Ji, Xuan; Zhang, Jing; Yang, Gui-Peng.
Afiliação
  • Zhao ML; Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
  • Ji X; Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
  • Zhang J; Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, C
  • Yang GP; Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, C
J Hazard Mater ; 465: 133337, 2024 Mar 05.
Article em En | MEDLINE | ID: mdl-38142656
ABSTRACT
The distributions and toxicities of the pollutants benzothiazoles (BTHs), benzotriazoles (BTRs), and benzotriazole ultraviolet stabilizers (BUVs) have attracted much attention, but most research has focused on freshwater environments and few have examined their levels in marine environments. This study, for the first time, investigated the spatial and temporal variability and ecological risks of BTHs, BTRs and BUVs in the Yangtze River estuary and its adjacent area, and further elucidated how environmental factors influence the transport of these contaminants. The concentrations of BTHs, BTRs, and BUVs in seawater showed significant seasonal variability, with the highest concentrations in summer, followed by autumn, and then winter-spring. The spatiotemporal variability in BTHs, BTRs and BUVs in the seawater and sediments samples showed decreasing trends from nearshore to offshore, reflecting the influence of river discharge. Marine debris and continuous discharge from cities were responsible for the high detection frequency of these contaminants in the YRE and its adjacent area. Furthermore, the moderate risk from the presence of BTHs, BTRs, and BUVs as they accumulate in sediments should not be ignored. Our study provides new insights into the fate and ecological risk of BTHs, BTRs, and BUVs in the estuary.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China