RIP1/3-dependent programmed necrosis induces intestinal injury in septic rats.
Acta Biochim Biophys Sin (Shanghai)
; 56(1): 106-113, 2024 01 25.
Article
em En
| MEDLINE
| ID: mdl-38151997
ABSTRACT
The regulation of various types of cell death may help to restore the normal physiological function of cells and play a protective role in sepsis. In the current study, we explore the role of programmed cell necrosis in sepsis and the underlying mechanisms. The septic rat model is established by Cecal-ligation and perforation (CLP), and the in vitro model is established by LPS in IEC-6 cells. Our results demonstrate that receptor-interacting protein 1 (RIP1) is significantly upregulated in the ileum of septic rats and LPS-treated IEC-6 cells at both the mRNA and protein levels. Nec-1, an inhibitor of RIP1, reduces the protein levels of RIP1, p-RIP3, and phosphorylated mixed-lineage kinase domain-like (MLKL) (serine 358) and relieves intestinal injury in CLP-induced septic rats with decreased IL-6 and TNF-α levels. The in vitro experiments further reveal that LPS induces the colocalization of RIP1 and RIP3, resulting in the phosphorylation and translocation of MLKL to the plasma membrane in IEC-6 cells. LPS also facilitates ROS production in IEC-6 cells, but this effect is further reversed by Nec-1, si-RIP1 and si-RIP3. Furthermore, LPS-induced necrosis in IEC-6 cells is counteracted by NAC. Thus, we conclude that RIP1/RIP3-dependent programmed cell necrosis participates in intestinal injury in sepsis and may be associated with RIP1/RIP3-mediated ROS.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Lipopolissacarídeos
/
Sepse
Limite:
Animals
Idioma:
En
Revista:
Acta Biochim Biophys Sin (Shanghai)
Assunto da revista:
BIOFISICA
/
BIOQUIMICA
Ano de publicação:
2024
Tipo de documento:
Article