Your browser doesn't support javascript.
loading
A programmable reaction-diffusion system for spatiotemporal cell signaling circuit design.
Rajasekaran, Rohith; Chang, Chih-Chia; Weix, Elliott W Z; Galateo, Thomas M; Coyle, Scott M.
Afiliação
  • Rajasekaran R; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrated Program in Biochemistry Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
  • Chang CC; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
  • Weix EWZ; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
  • Galateo TM; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
  • Coyle SM; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA. Electronic address: smcoyle@wisc.edu.
Cell ; 187(2): 345-359.e16, 2024 01 18.
Article em En | MEDLINE | ID: mdl-38181787
ABSTRACT
Cells self-organize molecules in space and time to generate complex behaviors, but we lack synthetic strategies for engineering spatiotemporal signaling. We present a programmable reaction-diffusion platform for designing protein oscillations, patterns, and circuits in mammalian cells using two bacterial proteins, MinD and MinE (MinDE). MinDE circuits act like "single-cell radios," emitting frequency-barcoded fluorescence signals that can be spectrally isolated and analyzed using digital signal processing tools. We define how to genetically program these signals and connect their spatiotemporal dynamics to cell biology using engineerable protein-protein interactions. This enabled us to construct sensitive reporter circuits that broadcast endogenous cell signaling dynamics on a frequency-barcoded imaging channel and to build control signal circuits that synthetically pattern activities in the cell, such as protein condensate assembly and actin filamentation. Our work establishes a paradigm for visualizing, probing, and engineering cellular activities at length and timescales critical for biological function.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Transdução de Sinais / Células Eucarióticas Limite: Animals Idioma: En Revista: Cell Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Transdução de Sinais / Células Eucarióticas Limite: Animals Idioma: En Revista: Cell Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos