Your browser doesn't support javascript.
loading
Synthesis and Evaluation of Peptide-Manganese Dioxide Nanocomposites as Adsorbents for the Removal of Strontium Ions.
Lu, Xingjie; Liu, Zhen; Wang, Wentao; Wang, Xin; Ma, Hongchao; Cao, Meiwen.
Afiliação
  • Lu X; State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
  • Liu Z; Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China.
  • Wang W; State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
  • Wang X; Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China.
  • Ma H; State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
  • Cao M; State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
Nanomaterials (Basel) ; 14(1)2023 Dec 23.
Article em En | MEDLINE | ID: mdl-38202507
ABSTRACT
In this study, a novel organic-inorganic hybrid material IIGK@MnO2 (2-naphthalenemethyl-isoleucine-isoleucine-glycine-lysine@manganese dioxide) was designed as a novel adsorbent for the removal of strontium ions (Sr2+). The morphology and structure of IIGK@MnO2 were characterized using TEM, AFM, XRD, and XPS. The results indicate that the large specific surface area and abundant negative surface charges of IIGK@MnO2 make its surface rich in active adsorption sites for Sr2+ adsorption. As expected, IIGK@MnO2 exhibited excellent adsorbing performance for Sr2+. According to the adsorption results, the interaction between Sr2+ and IIGK@MnO2 can be fitted with the Langmuir isotherm and pseudo-second-order equation. Moreover, leaching and desorption experiments were conducted to assess the recycling capacity, demonstrating significant reusability of IIGK@MnO2.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China