Self-complementary AAV vector therapy for treating corneal cloudiness of mucopolysaccharidosis type VII (MPS VII).
Ocul Surf
; 32: 39-47, 2024 Apr.
Article
em En
| MEDLINE
| ID: mdl-38218582
ABSTRACT
PURPOSE:
To design a novel efficacious scAAV-Gusb viral vector for treating Mucopolysaccharidosis Type VII (MPS VII) caused by a mutation in the ß-Glu gene (Gusb allele).METHODS:
ß-Glu expression of single-stranded AAV-Gusb (ssAAV-Gusb) and self-complementary AAV (scAAV-Gusb) vectors are tested with cultured murine Gusb fibroblasts. The scAAV-Gusb vector was chosen in further studies to prolong the life span and treat corneal pathology of Gusb mice via intrahepatic injection of neonates and intrastromal injection in adults, respectively. Corneal pathology was studied using HRT2 in vivo confocal microscope and histochemistry in mice corneas.RESULTS:
Both ssAAV-Gusb and scAAV-Gusb vectors expressed murine ß-Glu in cultured Gusb fibroblasts. The scAAV-Gusb vector had higher transduction efficiency than the ssAAV-Gusb vector. To prolong the life span of Gusb mice, neonates (3 days old) were administered with scAAV-Gusb virus via intrahepatic injection. The treatment improves the survival rate of Gusb mice, prolonging the median survival rate from 22.5 weeks (untreated) to 50 weeks (treated). Thereafter, we determined the efficacy of the scAAV-Gusb virus in ameliorating corneal cloudiness observed in aged Gusb mice. Both corneal cloudiness and stroma thickness decreased, and there was the presence of ß-Glu enzyme activity in the Gusb corneas receiving scAAV-Gusb virus associated with morphology change of amoeboid stromal cells in untreated to characteristic dendritic keratocytes morphology after 4-12 weeks of scAAV-Gusb virus injection.CONCLUSION:
Intrahepatic injection of scAAV-Gusb is efficacious in prolonging the life span of Gusb mice, and intrastromal injection can ameliorate corneal phenotypes. Both strategies can be adapted for treating other MPS.Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Terapia Genética
/
Mucopolissacaridose VII
/
Dependovirus
/
Modelos Animais de Doenças
/
Vetores Genéticos
Limite:
Animals
Idioma:
En
Revista:
Ocul Surf
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Estados Unidos