Your browser doesn't support javascript.
loading
Leveraging Curvature on N-Doped Carbon Materials for Hydrogen Storage.
Rice, Peter S; Lee, Gabriel; Schwartz, Brayden; Autrey, Tom; Ginovska, Bojana.
Afiliação
  • Rice PS; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA.
  • Lee G; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA.
  • Schwartz B; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA.
  • Autrey T; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA.
  • Ginovska B; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA.
Small ; 20(25): e2310162, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38221703
ABSTRACT
Carbon sorbent materials have shown great promise for solid-state hydrogen (H2) storage. Modification of these materials with nitrogen (N) dopants has been undertaken to develop materials that can store H2 at ambient temperatures. In this work density functional theory (DFT) calculations are used to systematically probe the influence of curvature on the stability and activity of undoped and N-doped carbon materials toward H binding. Specifically, four models of carbon materials are used graphene, [5,5] carbon nanotube, [5,5] D5d-C120, and C60, to extract and correlate the thermodynamic properties of active sites with varying degrees of sp2 hybridization (curvature). From the calculations and analysis, it is found that graphitic N-doping is thermodynamically favored on more pyramidal sites with increased curvature. In contrast, it is found that the hydrogen binding energy is weakly affected by curvature and is dominated by electronic effects induced by N-doping. These findings highlight the importance of modulating the heteroatom doping configuration and the lattice topology when developing materials for H2 storage.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos