Your browser doesn't support javascript.
loading
Investigating the effects of the local environment on bottlebrush conformations using super-resolution microscopy.
Chan, Jonathan M; Kordon, Avram C; Wang, Muzhou.
Afiliação
  • Chan JM; Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA. mwang@northwestern.edu.
  • Kordon AC; Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA. mwang@northwestern.edu.
  • Wang M; Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA. mwang@northwestern.edu.
Nanoscale ; 16(5): 2409-2418, 2024 Feb 01.
Article em En | MEDLINE | ID: mdl-38230506
ABSTRACT
The single-chain physics of bottlebrush polymers plays a key role in their macroscopic properties. Although efforts have been made to understand the behavior of single isolated bottlebrushes, studies on their behavior in crowded, application-relevant environments have been insufficient due to limitations in characterization techniques. Here, we use single-molecule localization microscopy (SMLM) to study the conformations of individual bottlebrush polymers by direct imaging. Our previous work focused on bottlebrushes in a matrix of linear polymers, where our observations suggested that their behavior was largely influenced by an entropic incompatibility between the bottlebrush side chains and the linear matrix. Instead, here we focus on systems where this effect is reduced in solvent-swollen polymer materials and in systems entirely composed of bottlebrushes. We measure chain conformations and rigidity using persistence length (lp) as side chain molecular weight (Msc) is varied. Compared to a system of linear polymers, we observe greater flexibility of the backbone in both systems. For bottlebrushes in bottlebrush matrices, we additionally observed a scaling relationship between lp and Msc that more closely follows theoretical predictions. For the more flexible chains in both systems, we reach the edge of our resolution limit and cannot visualize the entire contour of every chain. We bypass this limitation by discussing the aspect ratios of the features within the super-resolution images.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Nanoscale / Nanoscale (Online) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Nanoscale / Nanoscale (Online) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos