Your browser doesn't support javascript.
loading
Organic Phosphorescent Hopper-Shaped Microstructures.
Yao, Wei; Sun, Kai; Li, Chenxiao; Zhang, Shasha; Liu, Kun; Wu, Beishen; Mao, Yufeng; Ma, Huili; Huang, Wei; An, Zhongfu.
Afiliação
  • Yao W; Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China.
  • Sun K; Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China.
  • Li C; Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China.
  • Zhang S; Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China.
  • Liu K; Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China.
  • Wu B; Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China.
  • Mao Y; Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China.
  • Ma H; Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China.
  • Huang W; Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China.
  • An Z; Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China.
Small ; 20(24): e2309559, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38243884
ABSTRACT
Hopper-shaped microcrystals, an unusual type of crystal with a large specific surface area, are promising for use in catalysis, drug delivery, and gas sensors. In contrast to well-studied inorganic hopper-shaped crystals, organic phosphorescent concave hopper-shaped microstructures are rarely reported. This study reports the synthesis of two types of organic stepped indented hopper-shaped microstructures with efficient room temperature phosphorescence (RTP) using a liquid phase self-assembly strategy. The formation mechanism is attributed to the interfacial instability induced by the concentration gradient and selective etching. Compared with flat microstructures, the stepped indented hopper-like RTP microstructures exhibit high sensitivity to oxygen. This work also demonstrates that packing the photochromic material into the concave hopper "vessel" effectively controls the switch of phosphorescence from energy transfer, expanding the potential applications of phosphorescent materials.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China