Your browser doesn't support javascript.
loading
Downward myocardial creep during stress PET imaging is inversely associated with mortality.
Kuronuma, Keiichiro; Miller, Robert J H; Wei, Chih-Chun; Singh, Ananya; Lemley, Mark H; Van Kriekinge, Serge D; Kavanagh, Paul B; Gransar, Heidi; Han, Donghee; Hayes, Sean W; Thomson, Louise; Dey, Damini; Friedman, John D; Berman, Daniel S; Slomka, Piotr J.
Afiliação
  • Kuronuma K; Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
  • Miller RJH; Department of Cardiology, Nihon University, Tokyo, Japan.
  • Wei CC; Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
  • Singh A; Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada.
  • Lemley MH; Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
  • Van Kriekinge SD; Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
  • Kavanagh PB; Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
  • Gransar H; Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
  • Han D; Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
  • Hayes SW; Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
  • Thomson L; Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
  • Dey D; Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
  • Friedman JD; Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
  • Berman DS; Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
  • Slomka PJ; Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
Eur J Nucl Med Mol Imaging ; 51(6): 1622-1631, 2024 May.
Article em En | MEDLINE | ID: mdl-38253908
ABSTRACT

PURPOSE:

The myocardial creep is a phenomenon in which the heart moves from its original position during stress-dynamic PET myocardial perfusion imaging (MPI) that can confound myocardial blood flow measurements. Therefore, myocardial motion correction is important to obtain reliable myocardial flow quantification. However, the clinical importance of the magnitude of myocardial creep has not been explored. We aimed to explore the prognostic value of myocardial creep quantified by an automated motion correction algorithm beyond traditional PET-MPI imaging variables.

METHODS:

Consecutive patients undergoing regadenoson rest-stress [82Rb]Cl PET-MPI were included. A newly developed 3D motion correction algorithm quantified myocardial creep, the maximum motion at stress during the first pass (60 s), in each direction. All-cause mortality (ACM) served as the primary endpoint.

RESULTS:

A total of 4,276 patients (median age 71 years; 60% male) were analyzed, and 1,007 ACM events were documented during a 5-year median follow-up. Processing time for automatic motion correction was < 12 s per patient. Myocardial creep in the superior to inferior (downward) direction was greater than the other directions (median, 4.2 mm vs. 1.3-1.7 mm). Annual mortality rates adjusted for age and sex were reduced with a larger downward creep, with a 4.2-fold ratio between the first (0 mm motion) and 10th decile (11 mm motion) (mortality, 7.9% vs. 1.9%/year). Downward creep was associated with lower ACM after full adjustment for clinical and imaging parameters (adjusted hazard ratio, 0.93; 95%CI, 0.91-0.95; p < 0.001). Adding downward creep to the standard PET-MPI imaging model significantly improved ACM prediction (area under the receiver operating characteristics curve, 0.790 vs. 0.775; p < 0.001), but other directions did not (p > 0.5).

CONCLUSIONS:

Downward myocardial creep during regadenoson stress carries additional information for the prediction of ACM beyond conventional flow and perfusion PET-MPI. This novel imaging biomarker is quantified automatically and rapidly from stress dynamic PET-MPI.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tomografia por Emissão de Pósitrons / Imagem de Perfusão do Miocárdio / Coração Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Eur J Nucl Med Mol Imaging Assunto da revista: MEDICINA NUCLEAR Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tomografia por Emissão de Pósitrons / Imagem de Perfusão do Miocárdio / Coração Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Eur J Nucl Med Mol Imaging Assunto da revista: MEDICINA NUCLEAR Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos