Your browser doesn't support javascript.
loading
Self-terminating, heterogeneous solid-electrolyte interphase enables reversible Li-ether cointercalation in graphite anodes.
Xia, Dawei; Jeong, Heonjae; Hou, Dewen; Tao, Lei; Li, Tianyi; Knight, Kristin; Hu, Anyang; Kamphaus, Ethan P; Nordlund, Dennis; Sainio, Sami; Liu, Yuzi; Morris, John R; Xu, Wenqian; Huang, Haibo; Li, Luxi; Xiong, Hui; Cheng, Lei; Lin, Feng.
Afiliação
  • Xia D; Department of Chemistry, Virginia Tech, Blacksburg, VA 24061.
  • Jeong H; Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, IL 60439.
  • Hou D; Materials Science Division, Argonne National Laboratory, Lemont, IL 60439.
  • Tao L; Department of Electronic Engineering, Gachon University, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea.
  • Li T; Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725.
  • Knight K; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439.
  • Hu A; Department of Chemistry, Virginia Tech, Blacksburg, VA 24061.
  • Kamphaus EP; X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439.
  • Nordlund D; Department of Chemistry, Virginia Tech, Blacksburg, VA 24061.
  • Sainio S; Department of Chemistry, Virginia Tech, Blacksburg, VA 24061.
  • Liu Y; Materials Science Division, Argonne National Laboratory, Lemont, IL 60439.
  • Morris JR; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
  • Xu W; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
  • Huang H; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439.
  • Li L; Department of Chemistry, Virginia Tech, Blacksburg, VA 24061.
  • Xiong H; X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439.
  • Cheng L; Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061.
  • Lin F; X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439.
Proc Natl Acad Sci U S A ; 121(5): e2313096121, 2024 Jan 30.
Article em En | MEDLINE | ID: mdl-38261613
ABSTRACT
Ether solvents are suitable for formulating solid-electrolyte interphase (SEI)-less ion-solvent cointercalation electrolytes in graphite for Na-ion and K-ion batteries. However, ether-based electrolytes have been historically perceived to cause exfoliation of graphite and cell failure in Li-ion batteries. In this study, we develop strategies to achieve reversible Li-solvent cointercalation in graphite through combining appropriate Li salts and ether solvents. Specifically, we design 1M LiBF4 1,2-dimethoxyethane (G1), which enables natural graphite to deliver ~91% initial Coulombic efficiency and >88% capacity retention after 400 cycles. We captured the spatial distribution of LiF at various length scales and quantified its heterogeneity. The electrolyte shows self-terminated reactivity on graphite edge planes and results in a grainy, fluorinated pseudo-SEI. The molecular origin of the pseudo-SEI is elucidated by ab initio molecular dynamics (AIMD) simulations. The operando synchrotron analyses further demonstrate the reversible and monotonous phase transformation of cointercalated graphite. Our findings demonstrate the feasibility of Li cointercalation chemistry in graphite for extreme-condition batteries. The work also paves the foundation for understanding and modulating the interphase generated by ether electrolytes in a broad range of electrodes and batteries.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2024 Tipo de documento: Article