Your browser doesn't support javascript.
loading
Omega-3 polyunsaturated fatty acids protect peritoneal mesothelial cells from hyperglycolysis and mesothelial-mesenchymal transition through the FFAR4/CaMKKß/AMPK/mTOR signaling pathway.
Zhang, Jing; Li, Hao; Zhong, Hui; Chen, Xiaoting; Hu, Zhang-Xue.
Afiliação
  • Zhang J; Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China.
  • Li H; Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China.
  • Zhong H; Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China.
  • Chen X; Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, China.
  • Hu ZX; Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China; National Clinical Research Center for Geriatrics and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China. Electronic address: hzxawy@scu.edu.cn.
Int Immunopharmacol ; 128: 111561, 2024 Feb 15.
Article em En | MEDLINE | ID: mdl-38262160
ABSTRACT
Peritoneal fibrosis is a severe clinical complication associated with peritoneal dialysis (PD) and impacts its efficacy and patient outcomes. The process of mesothelial-mesenchymal transition (MMT) in peritoneal mesothelial cells plays a pivotal role in fibrogenesis, whereas metabolic reprogramming, characterized by excessive glycolysis, is essential in MMT development. No reliable therapies are available despite substantial progress made in understanding the mechanisms underlying peritoneal fibrosis. Protective effect of omega-3 polyunsaturated fatty acids (ω3 PUFAs) has been described in PD-induced peritoneal fibrosis, although the detailed mechanisms remain unknown. It is known that ω3 PUFAs bind to and activate the free fatty acid receptor 4 (FFAR4). However, the expression and role of FFAR4 in the peritoneum have not been investigated. Thus, we hypothesized that ω3 PUFAs would alleviate peritoneal fibrosis by inhibiting hyperglycolysis and MMT through FFAR4 activation. First, we determined FFAR4 expression in peritoneal mesothelium in humans and mice. FFAR4 expression was abnormally decreased in patients on PD and mice and HMrSV5 mesothelial cells exposed to PD fluid (PDF); this change was restored by the ω3 PUFAs (EPA and DHA). ω3 PUFAs significantly inhibited peritoneal hyperglycolysis, MMT, and fibrosis in PDF-treated mice and HMrSV5 mesothelial cells; these changes induced by ω3 PUFAs were blunted by treatment with the FFAR4 antagonist AH7614 and FFAR4 siRNA. Additionally, ω3 PUFAs induced FFAR4, Ca2+/calmodulin-dependent protein kinase kinase ß (CaMKKß), and AMPK and suppressed mTOR, leading to the inhibition of hyperglycolysis, demonstrating that the ω3 PUFAs-mediated FFAR4 activation ameliorated peritoneal fibrosis by inhibiting hyperglycolysis and MMT via CaMKKß/AMPK/mTOR signaling. As natural FFAR4 agonists, ω3 PUFAs may be considered for the treatment of PD-associated peritoneal fibrosis.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ácidos Graxos Ômega-3 / Fibrose Peritoneal Limite: Animals / Humans Idioma: En Revista: Int Immunopharmacol Assunto da revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ácidos Graxos Ômega-3 / Fibrose Peritoneal Limite: Animals / Humans Idioma: En Revista: Int Immunopharmacol Assunto da revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China