Your browser doesn't support javascript.
loading
Imeglimin Exhibits Novel Anti-Inflammatory Effects on High-Glucose-Stimulated Mouse Microglia through ULK1-Mediated Suppression of the TXNIP-NLRP3 Axis.
Kato, Hisashi; Iwashita, Kaori; Iwasa, Masayo; Kato, Sayaka; Yamakage, Hajime; Suganami, Takayoshi; Tanaka, Masashi; Satoh-Asahara, Noriko.
Afiliação
  • Kato H; Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan.
  • Iwashita K; Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan.
  • Iwasa M; Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan.
  • Kato S; Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan.
  • Yamakage H; Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
  • Suganami T; Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan.
  • Tanaka M; Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.
  • Satoh-Asahara N; Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Japan.
Cells ; 13(3)2024 Feb 05.
Article em En | MEDLINE | ID: mdl-38334676
ABSTRACT
Type 2 diabetes mellitus (T2DM) is an epidemiological risk factor for dementia and has been implicated in multifactorial pathologies, including neuroinflammation. In the present study, we aimed to elucidate the potential anti-inflammatory effects of imeglimin, a novel antidiabetic agent, on high-glucose (HG)-stimulated microglia. Mouse microglial BV2 cells were stimulated with HG in the presence or absence of imeglimin. We examined the effects of imeglimin on the levels of proinflammatory cytokines, intracellular reactive oxygen species (ROS), mitochondrial integrity, and components related to the inflammasome or autophagy pathways in these cells. Our results showed that imeglimin suppressed the HG-induced production of interleukin-1beta (IL-1ß) by reducing the intracellular ROS levels, ameliorating mitochondrial dysfunction, and inhibiting the activation of the thioredoxin-interacting protein (TXNIP)-NOD-like receptor family pyrin domain containing 3 (NLRP3) axis. Moreover, the inhibitory effects of imeglimin on the TXNIP-NLRP3 axis depended on the imeglimin-induced activation of ULK1, which also exhibited novel anti-inflammatory effects without autophagy induction. These findings suggest that imeglimin exerted novel suppressive effects on HG-stimulated microglia through the ULK1-TXNIP-NLRP3 axis, and may, thereby, contribute to the development of innovative strategies to prevent T2DM-associated cognitive impairment.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Triazinas / Diabetes Mellitus Tipo 2 Tipo de estudo: Risk_factors_studies Limite: Animals Idioma: En Revista: Cells Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Triazinas / Diabetes Mellitus Tipo 2 Tipo de estudo: Risk_factors_studies Limite: Animals Idioma: En Revista: Cells Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão