Your browser doesn't support javascript.
loading
Monitoring SF6 Gas Leakage Based on a Customized Binocular System.
Si, Wenrong; Zhao, Yingying; Wang, Yan; Li, Ben; Tong, Geng; Yu, Yiting.
Afiliação
  • Si W; State Grid Shanghai Electric Power Research Institute, Shanghai 200437, China.
  • Zhao Y; State Grid Shanghai Electric Power Research Institute, Shanghai 200437, China.
  • Wang Y; Ningbo Institute of Northwestern Polytechnical University, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
  • Li B; Key Laboratory of Micro/Nano Systems for Aerospace (Ministry of Education), Key Laboratory of Micro- and Nano-Electro-Mechanical Systems of Shaanxi Province, Northwestern Polytechnical University, Xi'an 710072, China.
  • Tong G; Ningbo Institute of Northwestern Polytechnical University, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
  • Yu Y; Key Laboratory of Micro/Nano Systems for Aerospace (Ministry of Education), Key Laboratory of Micro- and Nano-Electro-Mechanical Systems of Shaanxi Province, Northwestern Polytechnical University, Xi'an 710072, China.
Sensors (Basel) ; 24(3)2024 Feb 03.
Article em En | MEDLINE | ID: mdl-38339711
ABSTRACT
Sulfur hexafluoride (SF6) gas is extensively utilized as an insulating and arc-quenching medium in the circuit breakers and isolating switches of electrical equipment. It effectively isolates the circuits from the atmosphere and promptly extinguishes arcs. Therefore, the issue of SF6 gas leakage poses a significant threat to the related application fields, and the detection of SF6 gas leakage becomes extremely important. Infrared imaging detection offers advantages including non-contact, high precision, and visualization. However, most existing infrared detection systems are equipped with only one filter to detect SF6 gas. The images captured contain background noise and system noise, making these systems vulnerable to interference from such noises. To address these issues, we propose a method for monitoring SF6 gas leakage based on a customized binocular imaging (CBI) system. The CBI system has two filters, greatly reducing the interference of system noise and background noise. The first filter features the absorption resonant peak of SF6 gas. The second filter is used to record background noise and system noise. One aspect to note is that, in order to avoid the interference of other gases, the central wavelength of this second filter should keep away from the absorption resonant peaks of those gases. Accordingly, the central wavelengths of our customized filters were determined as 10,630 nm and 8370 nm, respectively. Then, two cameras of the same type were separately assembled with a customized filter, and the CBI prototype was accomplished. Finally, we utilized the difference method using two infrared images captured by the CBI system, to monitor the SF6 gas leakage. The results demonstrate that our developed system achieves a high accuracy of over 99.8% in detecting SF6 gas. Furthermore, the CBI system supports a plug-and-play customization to detect various gases for different scenarios.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China