Your browser doesn't support javascript.
loading
N-acetylcysteine as a novel methacrylate-based resin cement component: effect on cell apoptosis and genotoxicity in human gingival fibroblasts.
Yang, Yang; Wang, Liping; Huang, Zelun; Ge, Lingu; Shi, Jianwei.
Afiliação
  • Yang Y; Department of Oral Implantology, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
  • Wang L; Department of Oral Implantology, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
  • Huang Z; School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
  • Ge L; School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
  • Shi J; Suzhou Stomatological Hospital, Suzhan Lu 1366, Suzhou, 215000, China.
BMC Oral Health ; 24(1): 222, 2024 Feb 12.
Article em En | MEDLINE | ID: mdl-38347533
ABSTRACT

BACKGROUND:

N-acetylcysteine (NAC) reduces the cytotoxicity and genotoxicity induced by monomers leached from dental composite resins. Herein, we investigated the effects of methacrylate-based resin cement used in dental implant restoration on apoptosis and genotoxicity, as well as the antiapoptotic and antigenotoxic capabilities of its component, NAC.

METHODS:

The antioxidant NAC (0.1 or 1 wt.%) was experimentally incorporated into the methacrylate-based dental resin cement Premier®. The Premier® + NAC (0.1 or 1 wt.%) mixture was subsequently immersed into Dulbecco's modified Eagle's medium for 72 h, and used to treat human gingival fibroblasts (HGFs). The viability of HGFs was determined using the XTT assay. The formation of deoxyribonucleic acid (DNA) double-strand breaks (DNA-DSBs) was determined using a γ-H2AX assay. Reactive oxygen species (ROS), apoptosis, necrosis, and cell cycles were detected and analyzed using flow cytometry.

RESULTS:

The eluate of Premier® significantly inhibited HGF proliferation in vitro by promoting a G1-phase cell cycle arrest, resulting in cell apoptosis. Significant ROS production and DNA-DSB induction were also found in HGFs exposed to the eluate. Incorporating NAC (1 wt.%) into Premier® was found to reduce cell cytotoxicity, the percentage of G1-phase cells, cell apoptosis, ROS production, and DNA-DSB induction.

CONCLUSION:

Incorporating NAC (1 wt.%) into methacrylate-based resin cement Premier® decreases the cell cytotoxicity, ROS production, and DNA-DSBs associated with resin use, and further offers protective effects against the early stages of cell apoptosis and G1-phase cell cycle arrest in HGFs. Overall, our in vitro results indicate that the addition of NAC into methacrylate-based resin cements may have clinically beneficial effects on the cytotoxicity and genotoxicity of these materials.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Acetilcisteína / Metacrilatos Limite: Humans Idioma: En Revista: BMC Oral Health Assunto da revista: ODONTOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Acetilcisteína / Metacrilatos Limite: Humans Idioma: En Revista: BMC Oral Health Assunto da revista: ODONTOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China