Your browser doesn't support javascript.
loading
Oxygen Vacancies-Induced Antifouling Photoelectrochemical Aptasensor for Highly Sensitive and Selective Determination of α-Fetoprotein.
Xin, Yanmei; Wang, Zhuo; Yao, Haizi; Dou, Xiaoru; Zhang, Ruiting; Wang, Huiqing; Miao, Yuqing; Zhang, Zhonghai.
Afiliação
  • Xin Y; Institute of Bismuth Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, China.
  • Wang Z; Institute of Bismuth Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, China.
  • Yao H; School of Energy Engineering, Huanghuai University, Zhumadian, Henan Province 463600, China.
  • Dou X; Institute of Bismuth Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, China.
  • Zhang R; Institute of Bismuth Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, China.
  • Wang H; Institute of Bismuth Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, China.
  • Miao Y; Institute of Bismuth Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, China.
  • Zhang Z; School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
Anal Chem ; 96(8): 3645-3654, 2024 02 27.
Article em En | MEDLINE | ID: mdl-38356334
ABSTRACT
Accurate measurement of cancer markers in urine is a convenient method for tumor monitoring. However, the concentration of cancer markers in urine is so low that it is difficult to achieve their measurement. Photoelectrochemical (PEC) sensors are a promising technology to realize the detection of trace cancer markers due to their high sensitivity. Currently, the interference of nonspecific biomolecules in urine is the main reason affecting the high sensitivity and selectivity of PEC sensors in detecting cancer markers. In this work, a strategy of oxygen vacancy (OV) modulation is proposed to construct a fouling-resistant PEC aptamer sensing platform for the detection of α-fetoprotein (AFP), a liver cancer marker. The introduction of OVs induces the formation of intermediate localized states in the photoelectric material, which not only facilitates the separation of photogenerated carriers but also leads to the redshift of the light absorption edge. More importantly, OVs with positive electrical properties can be employed to modify the antifouling layer (C-PEG) with negatively charged groups through an electrostatic interaction. The synergistic effect of OVs, antifouling layer, and aptamer resulted in a TiO2/OVs/C-PEG-based PEC sensor achieves a wide linear range from 1 pg/mL to 100 ng/mL and a low detection limit of 0.3 pg/mL for AFP. In addition, the sensor successfully realized the determination of AFP in urine samples and accurately differentiated between normal people and liver cancer patients in the early and advanced stages. This project is of great significance in advancing the application of photoelectrochemical bioanalytical technology to achieve the detection of cancer markers in urine by investigating the construction of an OVs-regulated fouling-resistant sensing interface.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Incrustação Biológica / Neoplasias Hepáticas Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Anal Chem Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Incrustação Biológica / Neoplasias Hepáticas Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Anal Chem Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China