Your browser doesn't support javascript.
loading
Human Exposure to Ambient Atmospheric Microplastics in a Megacity: Spatiotemporal Variation and Associated Microorganism-Related Health Risk.
Xu, Libo; Bai, Xinyi; Li, Kang; Zhang, Guangbao; Zhang, Mengjun; Hu, Min; Huang, Yi.
Afiliação
  • Xu L; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
  • Bai X; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
  • Li K; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
  • Zhang G; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
  • Zhang M; Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
  • Hu M; PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, Guangdong 518057, China.
  • Huang Y; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
Environ Sci Technol ; 58(8): 3702-3713, 2024 Feb 27.
Article em En | MEDLINE | ID: mdl-38356452
ABSTRACT
Microplastics are found in various human tissues and are considered harmful, raising concerns about human exposure to microplastics in the environment. Existing research has analyzed indoor and occupational scenarios, but long-term monitoring of ambient atmospheric microplastics (AMPs), especially in highly polluted urban regions, needs to be further investigated. This study estimated human environmental exposure to AMPs by considering inhalation, dust ingestion, and dermal exposure in three urban functional zones within a megacity. The annual exposure quantity was 7.37 × 104 items for children and 1.06 × 105 items for adults, comparable with the human microplastic consumption from food and water. Significant spatiotemporal differences were observed in the characteristics of AMPs that humans were exposed to, with wind speed and rainfall frequency mainly driving these changes. The annual human AMP exposure quantity in urban green land spaces, which were recognized as relatively low polluted zones, was comparable with that in public service zones and residential zones. Notably, significant positive correlations between the AMP characteristics and the pathogenicity of the airborne bacterial community were discovered. AMP size and immune-mediated disease risks brought by atmospheric microbes showed the most significant relationship, where Sphingomonas might act as the potential key mediator.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Microplásticos Tipo de estudo: Etiology_studies / Risk_factors_studies Limite: Adult / Child / Humans Idioma: En Revista: Environ Sci Technol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Microplásticos Tipo de estudo: Etiology_studies / Risk_factors_studies Limite: Adult / Child / Humans Idioma: En Revista: Environ Sci Technol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China