Your browser doesn't support javascript.
loading
Characterization of Partial Discharges in Dielectric Oils Using High-Resolution CMOS Image Sensor and Convolutional Neural Networks.
Monzón-Verona, José Miguel; González-Domínguez, Pablo; García-Alonso, Santiago.
Afiliação
  • Monzón-Verona JM; Electrical Engineering Department (DIE), University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.
  • González-Domínguez P; Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.
  • García-Alonso S; Electrical Engineering Department (DIE), University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.
Sensors (Basel) ; 24(4)2024 Feb 18.
Article em En | MEDLINE | ID: mdl-38400475
ABSTRACT
In this work, an exhaustive analysis of the partial discharges that originate in the bubbles present in dielectric mineral oils is carried out. To achieve this, a low-cost, high-resolution CMOS image sensor is used. Partial discharge measurements using that image sensor are validated by a standard electrical detection system that uses a discharge capacitor. In order to accurately identify the images corresponding to partial discharges, a convolutional neural network is trained using a large set of images captured by the image sensor. An image classification model is also developed using deep learning with a convolutional network based on a TensorFlow and Keras model. The classification results of the experiments show that the accuracy achieved by our model is around 95% on the validation set and 82% on the test set. As a result of this work, a non-destructive diagnosis method has been developed that is based on the use of an image sensor and the design of a convolutional neural network. This approach allows us to obtain information about the state of mineral oils before breakdown occurs, providing a valuable tool for the evaluation and maintenance of these dielectric oils.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Espanha