Your browser doesn't support javascript.
loading
Functional divergence of two arginine decarboxylase genes in tropane alkaloid biosynthesis and root growth in Atropa belladonna.
Liu, Xiaoqiang; Yang, Mei; Zhu, Jiahui; Zeng, Junlan; Qiu, Fei; Zeng, Lingjiang; Yang, Chunxian; Zhang, Hongbo; Lan, Xiaozhong; Chen, Min; Liao, Zhihua; Zhao, Tengfei.
Afiliação
  • Liu X; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China.
  • Yang M; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China.
  • Zhu J; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China.
  • Zeng J; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China.
  • Qiu F; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China.
  • Zeng L; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China.
  • Yang C; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China.
  • Zhang H; Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
  • Lan X; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, TAAHC-SWU Medicinal Plant Joint R&D Centre, Tibet Agriculture and Animal Husband
  • Chen M; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
  • Liao Z; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China. Electronic address: zhliao@swu.edu.cn.
  • Zhao T; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China. Electronic address: tengfeizhao@swu.edu.cn.
Plant Physiol Biochem ; 208: 108439, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38408396
ABSTRACT
Putrescine, produced via the arginine decarboxylase (ADC)/ornithine decarboxylase (ODC)-mediated pathway, is an initial precursor for polyamines metabolism and the root-specific biosynthesis of medicinal tropane alkaloids (TAs). These alkaloids are widely used as muscarinic acetylcholine antagonists in clinics. Although the functions of ODC in biosynthesis of polyamines and TAs have been well investigated, the role of ADC is still poorly understood. In this study, enzyme inhibitor treatment showed that ADC was involved in the biosynthesis of putrescine-derived metabolites and root growth in Atropa belladonna. Further analysis found that there were six ADC unigenes in the A. belladonna transcriptome, with two of them, AbADC1 and AbADC2, exhibiting high expression in the roots. To investigate their roles in TAs/polyamines metabolism and root growth, RNA interference (RNAi) was used to suppress either AbADC1 or AbADC2 expression in A. belladonna hairy roots. Suppression of the AbADC1 expression resulted in a significant reduction in the putrescine content and hairy root biomass. However, it had no noticeable effect on the levels of N-methylputrescine and the TAs hyoscyamine, anisodamine, and scopolamine. On the other hand, suppression of AbADC2 expression markedly reduced the levels of putrescine, N-methylputrescine, and TAs, but had no significant effect on hairy root biomass. According to ß-glucuronidase (GUS) staining assays, AbADC1 was mainly expressed in the root elongation and division region while AbADC2 was mainly expressed in the cylinder of the root maturation region. These differences in expression led to functional divergence, with AbADC1 primarily regulating root growth and AbADC2 contributing to TA biosynthesis.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Atropa belladonna / Carboxiliases / Alcaloides Idioma: En Revista: Plant Physiol Biochem Assunto da revista: BIOQUIMICA / BOTANICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Atropa belladonna / Carboxiliases / Alcaloides Idioma: En Revista: Plant Physiol Biochem Assunto da revista: BIOQUIMICA / BOTANICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China