Your browser doesn't support javascript.
loading
Bacterial proximity effects on the transfer of antibiotic resistance genes within the alimentary tract of yellow mealworm larvae.
Crippen, Tawni L; Sullivan, John P; Anderson, Robin C.
Afiliação
  • Crippen TL; Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 2881 F and B Road, College Station, TX 77845, USA.
  • Sullivan JP; Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 2881 F and B Road, College Station, TX 77845, USA.
  • Anderson RC; Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 2881 F and B Road, College Station, TX 77845, USA.
J Econ Entomol ; 117(2): 417-426, 2024 04 12.
Article em En | MEDLINE | ID: mdl-38412361
ABSTRACT
The arthropod intestinal tract and other anatomical parts naturally carry microorganisms. Some of which are pathogens, secrete toxins, or carry transferable antibiotic-resistance genes. The risks associated with the production and consumption of edible arthropods are dependent on indigenous microbes, as well as microbes introduced during the processes of rearing. This mass arthropod production puts individual arthropods in close proximity, which increases the possibility of their exposure to antibiotic-resistant bacteria carried by bacteria from fellow insects, industry workers, or rearing hardware and substrates. The purpose of this study was to determine if the alimentary tract of the yellow mealworm provided an environment permitting horizontal gene transfer between bacteria. The effect of the concentration of bacterial exposure was also assessed. Antibiotic resistance gene transfer between marker Salmonella Lignières (Enterobacterales Enterobacteriaceae) and Escherichia coli (Migula) (Enterobacterales Enterobacteriaceae) introduced into the larval gut demonstrated that the nutrient-rich environment of the yellow mealworm gut provided favorable conditions for the transfer of antibiotic resistance genes. Conjugation frequencies were similar across inoculum concentrations; however, transconjugant production correlated positively to increased exposure concentration. The lowest concentration of bacterial exposure required enrichment to detect and thus may have been approaching a threshold level for the 2 bacteria to colocate within the expanse of the larval gut. While many factors can affect this transfer, the simple factor of the proximity of donor and recipient bacteria, as defined by the concentration of bacteria within the volume of the insect gut, likely primarily contributed to the efficiency of antibiotic gene transfer.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tenebrio / Antibacterianos Limite: Animals Idioma: En Revista: J Econ Entomol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tenebrio / Antibacterianos Limite: Animals Idioma: En Revista: J Econ Entomol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos