Your browser doesn't support javascript.
loading
Opioid receptor antagonists reduce motivated wheel-running behavior in mice.
Kitanaka, Nobue; Arai, Kanayo; Takehara, Kaoko; Hall, F Scott; Tomita, Kazuo; Igarashi, Kento; Sato, Tomoaki; Uhl, George R; Kitanaka, Junichi.
Afiliação
  • Kitanaka N; Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan.
  • Arai K; Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan.
  • Takehara K; Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan.
  • Hall FS; Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio, USA.
  • Tomita K; Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
  • Igarashi K; Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
  • Sato T; Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
  • Uhl GR; Neurology, VA Maryland Healthcare System.
  • Kitanaka J; Departments of Neurology.
Behav Pharmacol ; 35(2-3): 114-121, 2024 Apr 01.
Article em En | MEDLINE | ID: mdl-38451023
ABSTRACT
We hypothesized that opioid receptor antagonists would inhibit motivated behavior produced by a natural reward. To evaluate motivated responses to a natural reward, mice were given access to running wheels for 71.5 h in a multi-configuration testing apparatus. In addition to a running wheel activity, locomotor activity (outside of the wheel), food and water intake, and access to a food container were measured in the apparatus. Mice were also tested separately for novel-object exploration to investigate whether naloxone affects behavior unrelated to natural reward. In untreated mice wheel running increased from day 1 to day 3. The selective µ-opioid receptor antagonist ß-funaltrexamine (ß-FNA) (5 mg/kg) slightly decreased wheel running, but did not affect the increase in wheel running from day 1 to day 3. The non-selective opioid receptor antagonist naloxone produced a greater reduction in wheel running than ß-FNA and eliminated the increase in wheel running that occurred over time in the other groups. Analysis of food access, locomotor behavior, and behavior in the novel-object test suggested that the reduction in wheel running was selective for this highly reinforcing behavior. These results indicate that opioid receptor antagonism reduces responses to the natural rewarding effects of wheel running and that these effects involve multiple opioid receptors since the non-selective opioid receptor antagonist had greater effects than the selective µ-opioid receptor antagonist. It is possible that at the doses employed, other receptor systems than opioid receptors might be involved, at least in part, in the effect of naloxone and ß-FNA.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Atividade Motora / Antagonistas de Entorpecentes Limite: Animals Idioma: En Revista: Behav Pharmacol Assunto da revista: CIENCIAS DO COMPORTAMENTO / FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Atividade Motora / Antagonistas de Entorpecentes Limite: Animals Idioma: En Revista: Behav Pharmacol Assunto da revista: CIENCIAS DO COMPORTAMENTO / FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão