Atomically Precise Single-Site Catalysts via Exsolution in a Polyoxometalate-Metal-Organic-Framework Architecture.
J Am Chem Soc
; 146(12): 7950-7955, 2024 Mar 27.
Article
em En
| MEDLINE
| ID: mdl-38483267
ABSTRACT
Single-site catalysts (SSCs) achieve a high catalytic performance through atomically dispersed active sites. A challenge facing the development of SSCs is aggregation of active catalytic species. Reducing the loading of these sites to very low levels is a common strategy to mitigate aggregation and sintering; however, this limits the tools that can be used to characterize the SSCs. Here we report a sintering-resistant SSC with high loading that is achieved by incorporating Anderson-Evans polyoxometalate clusters (POMs, MMo6O24, M = Rh/Pt) within NU-1000, a Zr-based metal-organic framework (MOF). The dual confinement provided by isolating the active site within the POM, then isolating the POMs within the MOF, facilitates the formation of isolated noble metal sites with low coordination numbers via exsolution from the POM during activation. The high loading (up to 3.2 wt %) that can be achieved without sintering allowed the local structure transformation in the POM cluster and the surrounding MOF to be evaluated using in situ X-ray scattering with pair distribution function (PDF) analysis. Notably, the Rh/Pt···Mo distance in the active catalyst is shorter than the M···M bond lengths in the respective bulk metals. Models of the active cluster structure were identified based on the PDF data with complementary computation and X-ray absorption spectroscopy analysis.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Revista:
J Am Chem Soc
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Estados Unidos